
Advanced Design System 2002

Analog/RF User-Defined Models

February 2002

Notice

The information contained in this document is subject to change without notice.

Agilent Technologies makes no warranty of any kind with regard to this material,
including, but not limited to, the implied warranties of merchantability and fitness
for a particular purpose. Agilent Technologies shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Warranty

A copy of the specific warranty terms that apply to this software product is available
upon request from your Agilent Technologies representative.

Restricted Rights Legend

Use, duplication or disclosure by the U. S. Government is subject to restrictions as set
forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1)
and (c) (2) of the Commercial Computer Software Restricted Rights clause at FAR
52.227-19 for other agencies.

Agilent Technologies
395 Page Mill Road
Palo Alto, CA 94304 U.S.A.

Copyright © 2002, Agilent Technologies. All Rights Reserved.
ii

Contents
1 Building User-Compiled Analog Models

Background .. 1-2
Creating a New Model .. 1-3

Starting a User-Compiled Model .. 1-3
Defining the Model Parameters .. 1-4
Creating the Model Symbol .. 1-7
Setting Options... 1-8
Creating the Code and Compiling the Model ... 1-9

Characteristics of User-Compiled Elements... 1-14
Creating Circuit Elements Interface Definitions and Declarations 1-16
Series IV Functions .. 1-28
Referencing Data Items.. 1-29
Displaying Error/Warning Messages .. 1-30
Using Built-In ADS Linear Elements in User-Defined Elements......................... 1-31
Booting All Elements in a User-Defined Element File .. 1-32

Porting Libra Senior to the ADS 1.0 Model Builder Interface.................................... 1-33
Data Items .. 1-33
Default Units ... 1-34
Substrates/Built-In Models.. 1-34
AEL Changes ... 1-35

Opening an Existing Model... 1-35
Deleting a User-Compiled Model.. 1-36
Linking User-Compiled Models... 1-37
Managing Model Files .. 1-39
Accessing Dynamically Loaded Devices .. 1-41

2 Creating Linear Circuit Elements
Deriving S-Parameter Equations .. 2-1
Deriving Y-Parameter Equations... 2-4
Coding a Linear Element .. 2-6

Pi-Section Resistive Attenuator .. 2-9
Transmission Line Section.. 2-15

Deriving an S-Parameter .. 2-15
Separating the Expressions.. 2-16

Algorithms... 2-18
Applying a Problem to the Coaxial Cable Section .. 2-19
Calculating Remaining Expressions... 2-22
Adding Noise Characteristics ... 2-23

3 Creating Nonlinear Circuit Elements
iii

Requirements for Creating Nonlinear Elements ... 3-1
Linear Part .. 3-2
Nonlinear Part .. 3-2
AC Part ... 3-3

User-defined P-N Diode Model... 3-4
Defining a Nonlinear Element... 3-5
Referencing Data Items.. 3-17
Displaying Error/Warning Messages .. 3-17

4 Creating Transient Circuit Elements
Requirements for Creating Transient Elements .. 4-1

Using Resistors, Capacitors, and Inductors ... 4-2
Using Transmission Lines... 4-3

User-defined P-N Diode Model... 4-4
Defining the Transient Device... 4-5
Transient Analysis Function.. 4-6
Referencing Data Items.. 4-7
Displaying Error/Warning Messages .. 4-7

5 Custom Modeling with Symbolically-Defined Devices
Writing SDD Equations .. 5-3

Port Variables .. 5-3
Defining Constitutive Relationships with Equations.. 5-4
Explicit Representation... 5-4
Implicit Representation... 5-5
Explicit Versus Implicit Representations... 5-6
Continuity.. 5-7
Weighting Functions .. 5-8
Controlling Currents ... 5-10
Specifying More than One Equation for a Port .. 5-10
Using an SDD to Generate Noise... 5-12
Summary .. 5-12

Adding an SDD to a Schematic .. 5-13
Defining a Controlling Current .. 5-15
Defining a Weighting Function.. 5-16

SDD Examples .. 5-17
Nonlinear Resistor .. 5-18
Ideal Amplifier Block ... 5-20
Ideal Mixer .. 5-23
Nonlinear Capacitors.. 5-25
Full Model Diode, with Capacitance and Resistance ... 5-28
Nonlinear Inductors .. 5-32
Controlling Current, Instantaneous Power.. 5-34
iv

Gummel-Poon BJT ... 5-36
Examples Summary ... 5-43

Modified Nodal Analysis .. 5-45
Alternative Implementation of a Capacitor ... 5-47
Error Messages ... 5-50

6 Custom Modeling with Frequency-Domain Defined Devices
Signal Models and Sources.. 6-2

Defining Sources .. 6-5
The Frequency-Domain Defined Device... 6-6

Retrieving Values from Port Variables .. 6-6
Defining Constitutive Relationships with Equations.. 6-8
Continuity.. 6-9
Specifying Carriers with the Freq Parameter.. 6-10
Creating Output Harmonics.. 6-11
Trigger Events... 6-16
Output Clock Enables... 6-17
Accessing Port Variables at Trigger Events.. 6-18
Delaying the Carrier and the Envelope... 6-19
Miscellaneous FDD Functions.. 6-20
Defining Input and Output Impedances.. 6-21
Compatibility with Different Simulation Modes ... 6-21
Components Based on the FDD .. 6-22

Adding an FDD to a Schematic .. 6-23
Defining Current and Voltage Equations .. 6-24
Defining Frequency Parameters ... 6-25
Defining Triggers .. 6-26
Defining Clock Enables .. 6-27

FDD Examples ... 6-28
IQ Modulator... 6-29
Mixer... 6-31
Sample and Hold.. 6-34

7 User-Compiled Models
Dialog Box Reference

New User-Compiled Model dialog box ... 7-1
Circuit Type dialog box ... 7-2
Open User-Compiled Model dialog box.. 7-3
User-Compiled Circuit Model, Parameters Tab .. 7-4
User-Compiled Circuit Model dialog box (Model Code Tab)............................... 7-7
Open File dialog box... 7-10
Save As dialog box ... 7-11
Code Options (Analog/RF Models) dialog box ... 7-12
v

Compile Options dialog box.. 7-13
User-Compiled Circuit Model dialog box (Options tab) 7-15
Delete User-Compiled Model dialog box .. 7-17
Link User-Compiled Model dialog box.. 7-18
Link Options dialog box .. 7-19
Confirm Model File Not Created message ... 7-20
Confirm Files Out-of-Synch message .. 7-21
File/Directory Management dialog box, UNIX .. 7-22
File Management dialog box, PC ... 7-23
Directory Management dialog box, PC... 7-24

Index
vi

Chapter 1: Building User-Compiled Analog
Models
The Model Development Kit provides a graphical user interface that enables you to
create your own circuit element models. Creating a model consists of three main
steps:

• Defining the parameters whose values will be entered from the schematic

• Defining the symbol and the number of pins

• Writing the C-code itself

When appropriately coded, these elements can be used in linear, nonlinear (Harmonic
Balance), transient, and Circuit Envelope simulations. The ADS Application
Extension Language (AEL) provides the coupling between the parameters in the
schematic design environment and the simulator. The Model Development Kit
manages the AEL code generation completely. It also provides a template of the
C code so all you need to do is add the relevant equations. Pin numbers and
parameters are provided in easy-to-remember C macros and are automatically
determined from the symbol drawing.

Note To use this tool, you must have the appropriate C++ compiler installed on your
computer. For details, refer to the installation manual for your platform.
1-1

Building User-Compiled Analog Models
Background
User-defined element models are implemented in ANSI-C code. The user-written code
is then compiled and linked with supplied object code to make an executable
program. This executable program serves as a replacement for the default circuit
simulator program. While the equation and parametric circuit capabilities included
in the circuit simulators can be used to effectively alter an element or network
response through its parameters, the user-compiled model feature allows you access
to state vector voltages that affect the model’s response currents and charges.

The analysis code for user-compiled models can be written to influence its response
depending on its parameters, stimulus controls, analysis type, and pin voltages. The
user-defined code can make use of many built-in element models.

You supply the following information using ANSI-C code and AEL (either written by
you or generated by the Model Development Kit interface):

• Definition (element names, number of pins, parameter list)

• Modeling functions (linear/nonlinear/transient/noise)

• Library and palette definitions

Note that although the user model is written in C, a C++ compiler is necessary for
linking the entire program. The newly integrated elements can then be used in the
same way as the built-in elements. A complete model can be developed, compiled and
used in a simulation without exiting the schematic design environment.

Note This chapter shows an example on the PC and uses the back-slash (\)
convention for file pathnames. On UNIX systems, the pathnames use the (forward)
slash (/).
1-2 Background

Creating a New Model
This section uses an example to demonstrate the steps that are required to create a
new analog user-compiled model using the Advanced Design System's Model
Development Kit. The following procedures are shown:

• Starting a new model

• Defining the model parameters

• Creating the model symbol and adding pins

• Writing and compiling the model

• Setting options

Starting a User-Compiled Model

1. Verify that Analog/RF is the current design type.

2. From the Schematic window, choose Tools > User-Compiled Model > New
User-Compiled Model .

3. Enter a name (in this example, MyModel). Click OK.

4. In the dialog box that appears, select the model type:

• Linear can have linear elements only

• Nonlinear can have both linear and nonlinear elements

Because this example model is a nonlinear diode (with two external pins and
one internal node), select Nonlinear for the circuit type.
Creating a New Model 1-3

Building User-Compiled Analog Models
5. Click OK and the User-Compiled Circuit Model dialog box appears.

Defining the Model Parameters

Use the Parameters tab to define input parameters. Each parameter must be
specified by name in the Parameter Name field and a value type (integer, string, real,
etc.) assigned to it.

Hint It is usually a good idea (but not required) to specify a default value in the
Default Value field.

Optionally you can specify a Parameter Type (unit) and description, as well as a
variety of parameter attributes. The Parameter Type controls the scale factor label
that is displayed in the dialog box during subsequent editing in the Edit Component

-Define input parameters

-Supply a description for the model
-Change the default instance name
-Specify which library the model should be stored in
-Choose whether or not to include this model in Bill of Materials
-Specify whether or not to use an external text editor (and which one)
-Specify layout artwork information

-Create/edit the symbol and its pins
-Copy a template for use with new or existing code
-Open an existing C code file and edit it
-Define various simulation functions
-Set compiling options
-View compilation status
-Save the C code file
1-4 Creating a New Model

Parameters dialog box. The text you enter in the Parameter Description field is
displayed in the component parameter dialog box that appears when you edit a
component/instance).

The remaining optional parameter attributes can be used as follows:

• Display parameter on schematic—defines whether or not the parameter appears
on the schematic

• Optimizable—controls whether or not to allow this parameter to be optimized

• Allow statistical distribution—controls whether or not this parameter is
allowed a statistical distribution when used in conjunction with the simulator's
statistical features

Note Once the model is compiled and inserted in the design, these attributes cannot
be modified.

If your parameters are similar to those a supplied component, you can copy and then
modify them.

To copy the parameters of a supplied component:

1. Click Copy Parameters From .

2. When the library browser appears, select the appropriate library and
component, in this example, Devices-Diodes > Diode_Model (PN-Junction Diode
Model).

3. The parameter list is updated and can now be modified.

Note Copying parameters from a component will also copy the default symbol,
which can then be modified as desired. The symbol can be seen when you click
Create/Edit Symbol and Pins from the Model Code tab.
Creating a New Model 1-5

Building User-Compiled Analog Models
1-6 Creating a New Model

Creating the Model Symbol

Once the parameters are defined, the next step is to generate or create the schematic
symbol (or modify the existing one if you used the Copy Parameters From option in
the Parameters tab). This is done from the Model Code tab.

Click Create/Edit Symbol and Pins to switch to symbol view in the Schematic
window. If you copied parameters from a supplied component (as in this example), the
associated symbol will be there, otherwise a default symbol is generated, based on the
number of ports on your design. Add any text or graphics as well as the proper
number of external pins. The program will determine how many external nodes exist
by the number of pins on the symbol page. You will be able to access the pins in your
code via auto-generated macros. You can also modify the symbol graphics and
number of pins at any time in the model generation process. Figure 1-1 shows the
symbol after modification. The bounding box was deleted, external pins added, and
text inserted.

Figure 1-1. Symbol after modification

When done defining the symbol, save the file and (optionally) close the window.
Creating a New Model 1-7

Building User-Compiled Analog Models
Setting Options

Additional options can be set on the Options tab:

• A description for the model

• The library the model should be part of

• Any associated layout artwork and macros

• An attribute to have the component counted in the Bill of Materials

• Specifying an alternate text editor

By setting an alternate text editor you can use something other than the
limited text editor accessed from the dialog box. Note that if you choose to use
an external editor, it is up to you to save your files before compiling.
1-8 Creating a New Model

Creating the Code and Compiling the Model

The code generation is done from the Model Code tab.

To set the desired options prior to generating:

Click Code Options . In the dialog box that appears, you can select those functions
available, as well as set the value for the number of internal, nonlinear nodes. The
Transient Function provides a field for No. of internal nodes for the transient
topology. The field appears for both linear and nonlinear models. The No. of
nonlinear internal nodes field displays only for nonlinear models.

Note The program will generate a file (named MyModel_h.c in this example) which
has macros defined to either enable or disable the functions. This file is
auto-generated for each compile, so you can modify these options if you decide to add
another function. The user-edited file is not referenced in the Makefile, it is
'#included' from the MyModel_h.c file.
Creating a New Model 1-9

Building User-Compiled Analog Models
A template is provided to assist you in quickly creating your code. It is
self-documenting and provides prototypes of all of the functions. (Note that functions
are prototyped so that they at least return a value, but this does not guarantee that
they will not cause simulation problems.)

To copy the template to your working model file:

1. Click Create New Code Template . In this example, the file will be called
MyModel.c.

2. When the template code appears, edit as necessary to add the correct
functionality for your model.

3. If using an external text editor, save the file.

Hint To edit an existing file, click Open File.

To set the compiling options prior to compiling:

Click Compile Options . Note that the current file is already in the Object Files to be
Linked list box on the right-hand side. You can optionally select other models to be
linked into the simulator. At this time you can also set the following options as
desired:

• If compilation is successful, make executable

If the model compiles successfully, this option enables automatic linking.
Because the linking can take a few minutes, you may not want to do this all
the time.

• Recompile all out-of-date object files

Verifies whether the other models (not the current model) are out of date, and
if so, recompiles them.

• Set debug flag on

When this option is selected, the appropriate flag is passed to the compiler to
include the debug information in the object code. You will then be able to step
through your code when the debugger is invoked. Refer to your debugger
documentation for details.
1-10 Creating a New Model

To compile the code:

Click Compile Simulator . The status is displayed in the Compilation Status pane. If
the compile and link process was successful, a new simulator executable will have
been generated in the current project directory. (If a prior executable existed, it
will have been renamed.)
Creating a New Model 1-11

Building User-Compiled Analog Models
Once compiled, the model is immediately available in the design environment. From
a Schematic window open the Library browser. The model can be found available in
the My Circuit Library (unless you supplied a unique library name in the Options
tab).
1-12 Creating a New Model

Select the component and place it on your schematic, just like any other built-in
component.
Creating a New Model 1-13

Building User-Compiled Analog Models
Characteristics of User-Compiled Elements
An unlimited number of user-defined elements in any number of C modules can be
written, compiled and linked to your circuit simulator program. Linear elements can
have up to 99 external pins, while nonlinear and transient elements can have any
number of external pins and internal nodes.

An element without external pins is treated as a Model Form that has no electrical
characteristics. Other elements can refer to this Model Form to obtain parameter
values.

Element names and parameter keywords are limited to alphanumeric characters and
the underscore character. Names cannot begin with a numeric character. In addition,
a leading underscore is not recommended as this can interfere with the built-in
variables. Any number of parameters of arbitrary type (integer, real, string or Model
Form reference) are allowed for each element. A Model Form reference can refer to
either a built-in or a user-defined Model Form.

For use in DC and frequency-domain simulations, an element can have either a linear
or nonlinear model. Either type of element can have a transient model for use in a
Transient simulation.

Linear and noise analysis responses of elements are computed in the frequency
domain. The linear response can be computed either in complex scattering matrix or
admittance matrix form. The noise response must be computed in complex current
correlation matrix form. A user-defined linear element can call most any existing
linear element to obtain its response.

Pre- and post-analysis entry points during program execution are provided to enable
such calls and to perform special operations, such as data file reading and memory
allocation/de-allocation.
1-14 Characteristics of User-Compiled Elements

Nonlinear element response is computed in the time domain at a sequence of time
samples. Time-to-frequency transformations are computed in the circuit simulator
engine and are transparent to the user. Element response is characterized by a set of
instantaneous (nonlinear) currents out of each pin, nonlinear charges at each pin and
their respective derivatives, all determined by applied pin voltages.

The user’s computation functions cannot call other nonlinear elements for their
responses. Element models with time-delay dependencies are supported.

Transient element response is computed in the time domain. Element response is
characterized by a set of instantaneous (nonlinear) currents out of each pin,
nonlinear charges at each pin and their respective derivatives, all as determined by
applied pin voltages. Transient computation functions cannot call other elements
(except for ideal resistors, capacitors, inductors and transmission lines) for their
responses.

Convolution element response can be computed in two ways. One way is to use a
linear model frequency response function so that the circuit simulation engine can
compute the time-domain impulse response. Alternatively, specific nonlinear
transient element response code can be used.
Characteristics of User-Compiled Elements 1-15

Building User-Compiled Analog Models
Creating Circuit Elements Interface Definitions and Declarations

Interfacing to the simulator code requires the use of certain ADS defined public C
symbols in user-defined element modules. The remainder of this chapter describes
the supplied userdefs.h file that contains these symbols (macros, interface data
structure typedefs, and function declarations). Note that the Model Development Kit
interface will automatically generate most of these functions and that the header file
will automatically be included.

Success or failure of a typical interface function call is determined by its return value,
1 for success and 0 for failure. Therefore, the ‘boolean ’ typedef and these macros are
provided. Although this boolean type is integer-valued, only TRUE and FALSE values
should be associated with it.

#define FALSE 0
#define false 0
#define TRUE 1
#define true 1
typedef int boolean;

Four macros define the Boltzmann constant (Joules/Kelvin), the charge of an electron
(Coulombs), the negative of absolute zero temperature (Celsius), and the standard
noise reference temperature (Kelvin). The noise-current correlation parameters
returned by an element’s noise analysis function must be normalized to
FOUR_K_TO--these parameters have admittance dimensions.

/* * define some physical constants */
#define BOLTZ 1.3806226e-23
#define CHARGE 1.6021918e-19
#define CTOK 273.15
#define NOISE_REF_TEMP 2 90.0 /* standard noise reference

temperature, in Kelvin */
#define FOUR_K_TO (4.0*BOLTZ*NOISE_REF_TEMP)
/* noise normalization 4kToB, B=1 Hz */

This macro obtains the number of items in an array definition at compile time.

#define siz(thing) (sizeof(thing)/sizeof(*thing))

For clarity, an argument passed by reference can be prefixed by one of these macros
in an ANSI function definition and prototype declaration.

#define IN /* input argument to function */
#define OUT /* output argument: modified/set by function */
#define INOUT /* argument used and modified by function */
#define UNUSED /* unused argument */
1-16 Characteristics of User-Compiled Elements

Linear response modeled in the frequency domain is complex, so the COMPLEX type is
used for admittance (Y), scattering (S), and noise current-correlation parameters.

typedef struct
{

double real;
double imag;

}
COMPLEX;

Each element parameter has a specific type.

typedef enum
{

NO_data = -1, /* unspecified */
REAL_data = 0,
INT_data = 1,
MTRL_data = 2, /* for parameter referring to an instance */
STRG_data = 3,
COMPLEX_data = 4

}

DataTypeE;

Each element parameter definition consists of a keyword string and type.

typedef struct {
char *keyword;
DataTypeE dataType

}
UserParamType;

The parameter values of an item are obtained in an array of the UserParamData type.
dataType is the discriminator tag to determine the actual value of the union. For
example, if it is MTRL_data , value.eeElemInst will refer to a substrate or model form.

typedef struct
{

DataTypeE dataType;
union
{

double dVal; /* for REAL_data */
int iVal; /* for INT_data */
void *eeElemInst; /* for MTRL_data */
char *strg; /* for STRG_data */

}value;
} UserParamData;
Characteristics of User-Compiled Elements 1-17

Building User-Compiled Analog Models
This type can be used specifically for 2-port elements if the conventional 2-port noise
parameters are available.

typedef struct
{

double nFmin; /* Noise Figure (dB) */
double magGamma; /* |opt. source Gamma| */
double angGamma; /* <opt. source Gamma (radians) */
double rnEff; /* Effective normalized noise resistance */
double rNorm; /* Normalizing resistance (ohms) */

} NParType;

Each user-element definition is of the UserElemDef type. The pre_analysis function is
useful for one-time operations such as parameter type checking, allocating memory,
and reading data files. This routine is called for all types of analysis.

Note that a nonlinear or parametric subnetwork instantiation will be flattened
(expanded) in the parent network. If there are two or more uses of a given
subnetwork, each occurrence will result in the pre-analysis function (and
post-analysis function) being called. The function must be written to properly
manage such actions as reading data files and allocating memory.

The compute_y function must load the nodal admittance matrix parameters at
frequency omega radians/sec into the passed yPar array. This function can call
ee_compute_y (described later) to use another element's admittance parameters.

The compute_n function must load the normalized nodal noise current correlation
parameters (Siemens, normalized to FOUR_K_TO) into the passed nCor array at
frequency omega radians/sec and the element admittance parameters, yPar . It can
call ee_compute_y (described later) to make use of another element's admittance and
noise correlation matrices.

The post_analysis function, called before processing a new circuit, is generally used
for cleanup operations such as freeing memory or deleting temporary files. This
function is called for all types of analysis. This function is called once for each
occurrence of an element, so it must be written to properly manage this situation.

A nonlinear element must contain additional device information in a static area of
type UserNonLinDef (described later); the pointer devDef must point to it.

The seniorInfo field is of arbitrary type, and can be used for any extra user-defined
data/description that is of no concern to the simulator.

A transient response for an element can be defined in a structure of type UserTranDef

(described later); the pointer tranDef must point to the structure. A transient
response function can be defined for either a linear or nonlinear element.
1-18 Characteristics of User-Compiled Elements

typedef struct _UserElemDef UserElemDef;
struct _UserElemDef
{

char *name; /* Element name. Not to exceed 8 characters */
int numExtNodes; /* Number of external nodes, max. 20 for linear element */
int numPars; /* Number of parameters for this element */

UserParamType *params; /* parameter array */

/* pre-analysis function: called after element item parsed successfully */

boolean (*pre_analysis)(INOUT UserInstDef *pInst);

/* Linear analysis function: called once for each new frequency point.

* Must return the item's admittance matrix in yPar array.

* NULL for nonlinear element */

boolean (*compute_y)(IN UserInstDef *pInst, IN double omega, OUT COMPLEX
*yPar);

/* Linear noise-analysis function: called once for each new frequency point.

Must return the item's noise-current correlation admittance, normalized to

FOUR_K_TO in nCor array.

* NULL if noiseless */

boolean (*compute_n)(IN UserInstDef *pInst, IN double omega, IN COMPLEX
*yPar, OUT COMPLEX *nCor);

/* post-analysis: called before new netlist is parsed */

boolean (*post_analysis)(INOUT UserInstDef *pInst);

UserNonLinDef *devDef; /* User's nonlinear device definition (NULL if
linear) */

struct _SeniorType *seniorInfo; /* Senior user defined type and data
(arbitrary) */

UserTranDef *tranDef; /* User's transient definition; NULL if none */

};

A nonlinear element response is characterized by the functions in the UserNonLinDef

type.
Characteristics of User-Compiled Elements 1-19

Building User-Compiled Analog Models
numIntNodes is the number of nodes internal to the element. In its model, the element
code must compute the contributions at all of its pins, which are ordered by external
followed by internal pins. If a UserTranDef type is defined for the element, the
numIntNodes in that structure must match this definition.

analyze_lin must load only the linear part (complex admittances) of the nonlinear
element in the frequency domain. Each admittance must be loaded by calling the
primitive add_lin_y function. For a branch admittance between nodes (i, j), 4 calls are
needed: +Y for (i, i), (j, j) and -Y for (i, j) and (j, i). analyze_lin can use ee_compute_y

to take advantage of pre-existing linear elements. analyze_nl must compute and load
the nonlinear response, using the element's pin voltages as input. The passed array
pinVoltage contains instantaneous values; however, delayed voltage differences can
be obtained using the get_delay_v function.

If P is the total number of pin voltages, formulate non-zero nonlinear current and
charge at each pin n as follows:

rn (t) = f (v0 (t), v1(t),..., vP-1(t), vk(t-*k), vl(t-*l),...) where rn is the pin current or
charge response,

*k, *l... are ideal delays, independent of the voltages. These responses and their
derivatives with respect to voltage (nonlinear conductances, capacitances) must be
computed and loaded using the add_nl_iq and add_nl_gc functions, respectively. Note
that the derivatives help the simulator to converge to a solution, but do not affect the
steady-state nonlinear response—therefore they may work even if not exact.
However, under certain simulation conditions in-exact derivatives may cause
convergence problems. However, for noise analysis they should be accurate, and for
convergence they should be continuous.

In a linear simulation, a nonlinear element must contribute its small-signal
linearized response; this is done through the analyze_ac function. The linear part can
be loaded by calling the element's analyze_lin function. The linearized part is just
the nonlinear conductances and capacitances computed above simply converted to
admittances at angular frequency omega and loaded into the circuit matrix using
add_lin_y .

Noise contribution of a nonlinear element in a linear simulation is added through the
analyze_ac_n function. The linear and linearized noise correlation parameters are
loaded using the primitive add_lin_n function. The linearized portion can include
shot, flicker, and burst noise contributions.

The modelDef field is of arbitrary type and can be used for any extra user-defined
nonlinear model data/description that is of no concern to the simulator.
1-20 Characteristics of User-Compiled Elements

typedef struct _UserNonLinDef UserNonLinDef;
struct _UserNonLinDef
{

int numIntNodes; /* # internal nodes of device */

/* Evaluate linear part (Y-pars) of device model */
boolean (*analyze_lin)(IN UserInstDef *pInst, IN double omega)

/* Evaluate nonlinear part of device model:
nonlinear current out of each pin, nonlinear charge at each pin
* derivative (w.r.t. pin voltage) of each
* nonlinear pin current, i.e. nonlinear conductance g,
* derivative (w.r.t. pin voltage) of each
* nonlinear pin charge, i.e. nonlinear capacitance c */

boolean (*analyze_nl)(IN UserInstDef *pInst, double *pinVoltage);

/* Evaluate small-signal AC model:
* compute total (linear+linearized) Y-pars of device */

boolean (*analyze_ac)(IN UserInstDef *pInst, IN double *pinVoltage, IN
double omega);
struct _SeniorModel *modelDef; /* user-defined Senior MODEL (arbitrary) */

/* Evaluate bias-dependent linear noise model:
compute total (linear+linearized) noise-current correlation parameters
(normalized to FOUR_K_TO, siemens) of device */

boolean (*analyze_ac_n)(IN UserInstDef *pInst, IN double *pinVoltage,
IN double omega);

};

A transient response function can be defined for any element (linear or nonlinear) by
defining the functions in the UserTranDef type shown.

numIntNodes is an arbitrary number of nodes internal to the element. In its model,
the element must compute the contributions at all its pins, which are ordered and
numbered (starting at zero) with the external pins first, followed by internal pins. If a
UserNonLinDef type is defined for the element, the numIntNodes in that structure must
match this definition.

Special routines are available to simplify the use of ideal resistors, capacitors,
inductors, and transmission lines within a transient element. For the circuit
simulator engine to perform the appropriate allocations, the number of these
elements (except resistors) must be predefined using numCaps, numInds , and
numTlines .
Characteristics of User-Compiled Elements 1-21

Building User-Compiled Analog Models
The analyze_tr function must compute and load the instantaneous time domain
response of the element, using the element's pin voltages as inputs. The passed array
pinVoltage contains the instantaneous voltages at both the external and internal
pins.

If P is the total number of pin voltages, formulate nonlinear current and charges at
each pin n as follows:

rn (t) = f (v0(t),v1(t),..., vP-1 (t)) where rn is the current out of the pin or charge
response. These responses and their voltage derivatives (nonlinear conductances and
capacitances) must be computed and loaded using the add_tr_iq and add_tr_gc

functions, respectively. Note that the derivatives are used to help converge to a
solution, therefore the simulator may reach a solution even if they are not exact.
However, under certain simulation conditions, inexact derivatives may cause
convergence problems. Also, for convergence reasons, they should be continuous.
1-22 Characteristics of User-Compiled Elements

The fix_tr function is called just before transient analysis begins. Its only purpose is
to set up ideal transmission lines for the user. Using the add_tr_tline function,
transmission line nodes and physical constants are defined. Once the transmission
line is defined here, time-domain analysis of it is performed automatically without
any further action by the user in the analyze_tr function.

typedef struct _UserTranDef UserTranDef;
struct _UserTranDef
{

int numIntNodes; /* internal nodes of device */
int numCaps; /* number of explicit capacitors */
int numInds; /* number of explicit inductors */
int numTlines; /* number of explicit transmission lines */
boolean useConvolution; /* use linear response for convolution */

/* Evaluate transient model
* nonlinear currents out of each pin,
* nonlinear charge at each pin
* derivative (w.r.t. pin voltage) of each
* nonlinear pin current, i.e. nonlinear conductance g,
* derivative (w.r.t. pin voltage) of each
* nonlinear pin charge, i.e. nonlinear capacitance c */

boolean (*analyze_tr)(IN UserInstDef *pInst, IN double *pinVoltage);
/* Pre-transient analysis routine used to allocate, compute and
* connect ideal transmission lines */

boolean (*fix_tr)(IN UserInstDef *pInst);
};

Each user-defined item placed in a design is represented in the ADS Simulator by the
item type UserInstDef . All the fields, except seniorData , in an item are set up by ADS
Simulator and must not be changed. seniorData can refer to arbitrary data and is
meant to be managed by user code exclusively.

typedef struct _UserInstDef UserInstDef;
struct _UserInstDef
{

char *tag; /* item name */
UserElemDef *userDef; /* access to user-element definition */
UserParamData *pData; /* item's parameters */
void *eeElemInst; /* EEsof's element item */
void *eeDevInst; /* EEsof's nonlinear device item */
void *seniorData; /* data allocated/managed/used only by
Senior module (arbitrary) */

};
Characteristics of User-Compiled Elements 1-23

Building User-Compiled Analog Models
The get_params function, below, loads the passed item eeElemInst parameter values
into pData , which must be big enough to store all parameters. It is used to obtain
referenced item (such as model substrate) parameters. Note that user-defined item
parameters are already available in the UserInstDef.pData array, so there is no need
to call get_params for user item parameters. It returns TRUE if successful, FALSE

otherwise.

extern boolean get_params (IN void *eeElemInst, OUT UserParamData *pData);

These functions are useful to indicate program status in various stages of execution,
such as during module boot-up, element analyses, and pre- or post-analysis.

extern void send_info_to_scn (IN char *msg); /* write msg to Status/
Progress window */

extern void send_error_to_scn (IN char *msg); /* write msg to Errors/
Warnings window */

In nonlinear analyses, for each set of independent input values (bias, frequency,
power, or swept variable), ADS simulator attempts to find the steady state solution
iteratively. In each iteration, nonlinear parts of all element items, including
user-defined items, are evaluated. This function returns TRUE whenever the first
iteration is in progress. It is most useful for parameter range checking, which is
sufficient to do at the first iteration.

extern boolean first_iteration (void);

This function returns TRUEwhenever the circuit is being analyzed at the first point in
a frequency plan. Note that this can happen many times in one simulation command
for example, if there is another swept variable, or if an optimization/yield analysis is
requested.

If a one-time-only operation is to be performed per circuit, the pre_analysis function
is recommended instead of this function.

extern boolean first_frequency (void);

The function below computes the normalized complex noise correlation matrix for a
passive element, given its Y-pars, operating temperature and number of pins.

extern boolean passive_noise (IN COMPLEX *yPar, IN double tempC, IN int
numNodes, OUT COMPLEX *nCor);
1-24 Characteristics of User-Compiled Elements

The function below computes the normalized complex noise correlation 2*2 matrix for
an active 3-terminal, 2-port element/network, given its Y-pars and measured noise
parameters. Note that if numFloatPins is 2, the common (reference) third terminal is
ground.

extern boolean active_noise (IN COMPLEX *yPar, IN NParType *nPar, int
numFloatPins, OUT COMPLEX *nCor);

The function below must be called (usually from nonlinear model's analyze_lin and
analyze_ac procedure) to add the linear complex Y-parameter (iPin, jPin) branch
contribution. This call must be done even for linear capacitive branches at DC (omega
= 0), this will establish the Jacobian matrix entry location for subsequent non-zero
harmonic omega.

extern boolean add_lin_y (INOUT UserInstDef *userInst, IN int iPin, IN int
jPin, IN COMPLEX y);

The function below must be called (from nonlinear model's analyze_ac_n function) to
add the complex noise-current correlation term iNcorr (Siemens, normalized to
FOUR_K_TO) from the (iPin, jPin) branch.

extern boolean add_lin_n (INOUT UserInstDef *userInst, IN int iPin, IN int
jPin, IN COMPLEX iNcorr);

The function below must be called (from nonlinear model's analyze_nl function) to
add the nonlinear conductance and capacitance contribution for the (iPin, jPin)
branch.

extern boolean add_nl_gc (INOUT UserInstDef *userInst, IN int iPin, IN int
jPin, IN double g, IN double c);

The function below must be called (from nonlinear model's analyze_nl function) to
add the nonlinear current and charge contribution at the device pin iPin.

extern boolean add_nl_iq (INOUT UserInstDef *userInst, IN int iPin, IN
double current, IN double charge);

The function below can be called (from nonlinear model's analyze_nl function) to get
tau seconds delayed (iPin, jPin) voltage difference. Note that tau must not be
dependent on device pin voltages--it is an ideal delay.

extern boolean get_delay_v (INOUT UserInstDef *userInst, IN int iPin, IN
int jPin, IN double tau, OUT double *vDelay);

Any transient support function that follows can use ground as a pin by using this
special macro:

#define GND -1
Characteristics of User-Compiled Elements 1-25

Building User-Compiled Analog Models
The function below can be called (from the transient model's analyze_tr function) to
obtain the current time value, in seconds, of the transient analysis.

extern double get_tr_time (void);

The function below must be called (from the transient model's analyze_tr function) to
add the nonlinear conductance and capacitance contribution for the (iPin, jPin)
branch.

extern boolean add_tr_gc (INOUT UserInstDef *userInst, IN int iPin, IN int
jPin, IN double g, IN double c);

The function below must be called (from the transient model's analyze_tr function)
to add the nonlinear current and charge contribution at the device pin iPin.

extern boolean add_tr_iq (INOUT UserInstDef *userInst, IN int iPin, IN
double current, IN double charge);

The function below can be called (from the transient model's analyze_tr function) to
add a resistor of rval Ohms between pin1 and pin2. The contribution of this resistor
need not be included in the other calculated currents, charges and derivatives. If rval

is less than 10-6, rval is set equal to 10-6.

extern boolean add_tr_resistor (INOUT UserInstDef *userInst, IN int
pin1,IN int pin2, IN double rval);

The function below can be called (from the transient model's analyze_tr function) to
add a capacitor of cval Farads between pin1 and pin2. The contribution of this
capacitor need not be included in the other calculated currents, charges and
derivatives. If cval is zero, an open circuit will exist between pin1 and pin2.

extern boolean add_tr_capacitor (INOUT UserInstDef *userInst, IN int
pin1,IN int pin2, IN double cval);

The function below can be called (from the transient model's analyze_tr function) to
add an inductor of lval Henries between pin1 and pin2. The contribution of this
inductor need not be included in the other calculated currents, charges and
derivatives. If lval is zero, a short circuit will exist between pin1 and pin2.

extern boolean add_tr_inductor (INOUT UserInstDef *userInst, IN int pin1,
IN int pin2, IN double lval);
1-26 Characteristics of User-Compiled Elements

The function below can be called (from the transient model's fix_tr function) to add
an ideal transmission line. The impedance of the line is z0 Ohms and the propagation
delay time of the line is td seconds. The loss parameter is used to describe the voltage
attenuation on the line; a loss of 1.0 specifies a lossless line; a loss of 0.5 specifies an
attenuation of 6 dB. The time domain simulation of this transmission line will be
computed automatically with no further action by the user in the analyze_tr

function.

extern boolean add_tr_tline (INOUT UserInstDef *userInst, IN int pin1, IN
int pin2, IN int pin3, IN int pin4, IN double z0, IN double td, IN double
loss);

The function below must be called by user-defined element code (possibly from a
pre_analysis function) that wants to use an element built in ADS. It returns a
pointer to an allocated ADS item if successful, NULL otherwise. This pointer must be
saved (possibly with the user-defined element item, in its seniorData field) and
passed to ee_compute_y or ee_compute_n .

extern void *ee_pre_analysis (IN char *elName, IN UserParamData *pData);

These functions allow access to Advanced Design System elements for linear and
noise analysis. Note that parameter data pData must be supplied in SI units, where
applicable. They return TRUE if successful, FALSE otherwise. To determine parameter
order, execute the simulator binary (hpeesofsim) using the -h flag and the name of the
parameter (e.g., $HPEESOF_DIR/bin/ hpeesofsim -h MLIN).

extern boolean ee_compute_y (INOUT void *eeElemInst, IN UserParamData
*pData, IN double omega, OUT COMPLEX *yPar);

extern boolean ee_compute_n (INOUT void *eeElemInst, IN UserParamData
*pData, IN double omega, IN COMPLEX *yPar,OUT COMPLEX *nCor);

The function below must be called by user-defined element code (possibly from a
post_analysis function) for every ee_pre_analysis call to free memory allocated for
the Advanced Design System item eeElemInst .

extern boolean ee_post_analysis (INOUT void *eeElemInst);

This returns a pointer to the UserInstDef user-defined item if eeElemInst is indeed
an item of a user-defined element, NULL otherwise.

extern UserInstDef *get_user_inst (IN void *eeElemInst);
Characteristics of User-Compiled Elements 1-27

Building User-Compiled Analog Models
The function converts between S- and Y-parameters. If direction is 0, it computes
S-parameters into outPar using inPar as Y-parameters. If direction is 1, it computes
Y-parameters into outPar using inPar as S-parameters. rNorm is the S-parameter
normalizing impedance in ohms, and size is the matrix size. It returns TRUE if
successful, FALSE otherwise.

extern boolean s_y_convert (IN COMPLEX *inPar, OUT COMPLEX *outPar, IN int
direction, IN double rNorm, IN int size);

Series IV Functions

The following C macros replace corresponding Series IV functions, which returned
scale factors to convert a parameter value to SI. In ADS, parameter data are always
considered to be in SI; hence these macros always return 1.0, and are meant only for
Series IV compatibility.

#define get_funit(eeElemInst) 1.0 /* freq unit */
#define get_runit(eeElemInst) 1.0 /* resistance unit */
#define get_gunit(eeElemInst) 1.0 /* conductance */
#define get_lunit(eeElemInst) 1.0 /* inductance */
#define get_cunit(eeElemInst) 1.0 /* capacitance */
#define get_lenunit(eeElemInst) 1.0 /* length unit */
#define get_tunit(eeElemInst) 1.0 /* time unit */
#define get_angunit(eeElemInst) 1.0 /* angle unit */
#define get_curunit(eeElemInst) 1.0 /* current unit */
#define get_volunit(eeElemInst) 1.0 /* voltage unit */
#define get_watt(eeElemInst, power) (power) /* power unit */
1-28 Characteristics of User-Compiled Elements

Referencing Data Items

A user-defined element parameter can be a reference to an ADS or a User-Defined
item. Use the get_params function to obtain the referenced item’s parameters.

As an example, if you are creating a microstrip element and need an MSUB
reference, the third parameter, for example, can be:

{"MSUB", MTRL_data}

Then the array entry userInst->pData[2] will be such that
pData[2].value.eeElemInst points to the referred MSUB item in the circuit. The
MSUB parameters can then be obtained through a get_params call:

get_params(userInst->pData[2].value.eeElemInst, mData)

This will copy the MSUB parameters:

Er Relative dielectric constant.

Mur Relative permeability.

H (m) Substrate thickness.

Hu (m) Cover height.

T (m) r Conductor thickness.

Cond (Siemens/m) Conductor conductivity.

TanD Dielectric Loss Tangent.

Rough Conductor surface roughness.

into mData[0...7] locations. The mData array must be dimensioned large enough to
hold all the referenced item’s parameters. If a parameter value is not set or available,
the `dataType' enum value will be NO_data.

If the referenced item (using the third parameter again) is an item of a user-defined
Data Item, then you can obtain a pointer to the user item as follows:

refInst = get_user_inst(userInst->pData[2].value.eeElemInst)

The function get_user_inst will return NULL if the passed argument is not a
user-defined item.
Characteristics of User-Compiled Elements 1-29

Building User-Compiled Analog Models
Displaying Error/Warning Messages

You can flag errors within a function in a user-defined element module and send
messages to the Simulation/Synthesis panel. You can also write helpful status and
debug messages to the Status/Summary panel. The following functions can be used
for sending the message to respective locations:

• extern void send_error_to_scn (char *)
writes message to Errors/Warnings panel

• extern void send_info_to_scn (char *)
writes message to Status/Progress panel

The argument of these functions is a character pointer that is the error message
string.

Examples:

send_error_to_scn("divide-by-zero condition detected");

send_info_to_scn("value of X falls outside its valid range");
1-30 Characteristics of User-Compiled Elements

Using Built-In ADS Linear Elements in User-Defined Elements

A user-defined element can call an ADS linear element to obtain the latter’s
COMPLEX Y and noise-correlation parameters. However, nonlinear devices, model
items, and independent sources cannot be called in a user-defined element module.
The relevant functions in the interface to support this feature are described below:

extern void *ee_pre_analysis (char *elName, UserParamData *pData);

To allocate a pseudo item and do any pre-analysis processing such as data file
reading, the user-defined element must first call this function. The second argument,
UserParamData *pData , must contain the data of correct type and in the order
expected by the ADS element. The values must be in SI units where applicable. This
function is usually called from the user-defined element’s pre_analysis function. It
returns a pointer to an allocated ADS item if successful, NULL otherwise. This pointer
must be saved (possibly with the user-defined element item, in its seniorData field)
and passed to ee_compute_y or ee_compute_n .

extern boolean ee_compute_y (void *eeElemInst, UserParamData *pData,
double omega, COMPLEX *yPar);

The function below obtains N×N COMPLEX Y-parameters of the N-node (excluding
ground) ADS element item in the user-supplied yPar array at frequency omega
radians/sec. It returns TRUE if successful, FALSE otherwise.

extern boolean ee_compute_n (void *eeElemInst, UserParamData *pData,
double omega, COMPLEX *yPar, COMPLEX *nCor);

The function below obtains the N×N COMPLEX Noise correlation matrix
parameters, given omega and the N×N COMPLEX Y-pars. It returns TRUE if
successful, FALSE otherwise.

extern boolean ee_post_analysis (void *eeElemInst);

This function must be called for each pseudo item created by each ee_pre_analysis

call by the user-defined element. This frees up the memory allocated for the ADS
item. It is usually called from the user-defined element’s post_analysis function. It
returns TRUE if successful, FALSE otherwise.
Characteristics of User-Compiled Elements 1-31

Building User-Compiled Analog Models
Booting All Elements in a User-Defined Element File

In order to keep the code modular, each user-defined element file can contain at most
a single external/public symbol definition; this is the booting function, usually named
boot_abc for a module named abc.c :

boolean boot_abc(void)

This function is called once per module—at program bootup. If the ModelBuilder
interface is used, only one model per file is allowed. However, multiple files can be
combined into one larger module by the user. The call to boot the module must be
included in the self-documented userindx.c file at the appropriate location. The
module’s file name must be added to the user.mak USER_C_SRCS definition.

All user-defined elements in the module can be defined in a static (with module-scope)
UserElemDef array, and booted by calling the provided function load_elements from
boot_abc :

extern boolean load_elements (UserElemDef *userElem, int numElem);

If necessary, you can include code for technology/data file reading, as well as for
automatic AEL generation, in the boot function.
1-32 Characteristics of User-Compiled Elements

Porting Libra Senior to the ADS 1.0 Model Builder
Interface
The ADS 1.0 Model Builder interface is designed to allow Series IV-Libra Senior
models to be easily ported. Most models will require recompiling using the supplied
makefiles. However, several features will require code modification if they were used:

• DataItems

• Default Units

• Substrates

• Calls to built-in elements

Data Items

The Data Item is replaced by references to an AEL expression, or equation. Users can
still access default values, however, the ‘*’ value is no longer supported and must be
replaced by references to built-in values. For example, the Series IV Data Items can
be set via comparable VAR expressions:

_DEFAULT_TEMP = 290.15

_DEFAULT_REF = 50

Instead of using the ‘*’ value to indicate the default, the parameter should be left
blank. If the value on the schematic is set to blank the simulator defaults to the
Series IV default values:

TEMP Temperature TEMP = 27 C

RREF Reference resistance R = 50 Ohm

TAND Dielectric loss tangent TAND = 0

PERM Permeability & Mag loss tangent MUR = 1; TANM = 0

SIGMA Dielectric conductivity SIGM = 0
Porting Libra Senior to the ADS 1.0 Model Builder Interface 1-33

Building User-Compiled Analog Models
Default Units

The concept of Default Units is not used in ADS. Instead, each parameter on a
component can have a scale factor. The simulator's parsing utility replaces the
parameter value+scale factor with the proper number (e.g., 1.23GHz is supplied to
the user's program as 1.23e9). Any calls to get_unit functions are still supported;
they merely return a value of 1.

Note that the scale label is ignored:

All calls to any of the units functions are all equivalent (the user’s code will receive a
value of le5).

Substrates/Built-In Models

The substrate use model has changed considerably in ADS and requires users to
modify their calls to any substrate components. Certain parameters have been moved
from Data Items to the instance, others to the substrate component. The order and
name of the parameters has also changed. Conductivity is specified instead of
resistivity.

User calls to built-in models may also have changed, depending on the element.
Users will have to reconfirm parameter ordering.

To determine parameter order, execute the simulator binary (hpeesofsim) using the
-h flag and the name of the parameter (e.g., $HPEESOF_DIR/bin/ hpeesofsim -h
MLIN).

Resistance = 100 kOhm

= 100 * 1e3

= 100 kBricks

= 100 kHz
1-34 Porting Libra Senior to the ADS 1.0 Model Builder Interface

AEL Changes

Series IV AEL may require substantial modification. For example, AEL references to
Series IV forms (rvopt, etc.) should be changed to 'StdFormSet.' It may be expedient
to use the Model Development Kit to generate the AEL file rather than edit a Series
IV file.

create_item("U2PA","User-Compiled Model","U2PA",16,-1,NULL,"Component
Parameters","","%d:%t%#%44?0%:%31?%C%:_net%c%;%;%e%b%r%8?%29?%:%30?%p%:%k%?
[%1i]%;=%p%;%;%;%e%e","U2PA","%t%b%r%38?%:\n%39?all_parm%A%:%30?%s%:%k%?
[%1i]%;=%s%;%;%;%e%e%;","U2PA",3,NULL,64,
create_parm("R1","Pin 1 to GND Resistance ",68608,"StdFormSet",-1,
prm("StdForm","50")),
create_parm("R2","Pin 1 to Pin 2 Resistance",68608,"StdFormSet",-1,
prm("StdForm","50")),
create_parm("R3","Pin 2 to GND Resistance",68608,"StdFormSet",-1,
prm("StdForm","50"))
);

Opening an Existing Model
To work on an existing user-compiled model, open the project where the model exists.
Use the menu command Tools->Open User-Compiled Model. Select the model from
the browser.
Opening an Existing Model 1-35

Building User-Compiled Analog Models
Deleting a User-Compiled Model
To permanently delete an existing user-compiled model, open the project where the
model exists. Use the menu command Tools->Delete User-Compiled Model. Select the
model to be deleted from the list. Click Apply to delete the model and leave the dialog
box active, or click OK to delete the model and dismiss the dialog. Click Cancel to
dismiss the dialog without deleting the model.

The program prompts you for confirmation before deleting.
1-36 Deleting a User-Compiled Model

Linking User-Compiled Models
Previously compiled user models can be linked without recompiling. Move the model
files into the projects networks directory. Select Tools->Link User-Compiled Model...
from the menu.

The Link Model dialog box opens.

Click the Link Options... button to open the Link Options dialog box. From this
dialog, select the models to be linked from the left hand column (Object files in
Project), and click the >> button to move them to the right hand column (Object Files
to be Linked)
Linking User-Compiled Models 1-37

Building User-Compiled Analog Models
.

Click the OK button to close the dialog. Click the Link Simulator button to link the
chosen models into a new executable. The new executable will be placed in the
projects directory (if an existing executable was already there, it will be renamed).
1-38 Linking User-Compiled Models

Managing Model Files
The Analog Model Development Kit interface uses several files as a means of
managing the C-code and the compile and link process.

The program copies certain files from the $HPEESOF_DIR/modelbuilder/lib
directory to the local project directory. For a model file called MyModel, when the
Create New Code Template button is clicked the file cui_circuit.template is copied to
MyModel.c. When the Compile button is clicked, hpeesofdebug.mak or hpeesofopt.mak
is always copied (depending on setting of Debug check box) and userindx.c, user.mak
are copied if they are not there, and MyModel_h.c, cui_indx.c, modelbuilder.mak are
created if they do not already exist, and existing files may be overwritten.

Figure 1-2. C-code File Relationship

The Makefile compiles the MyModel_h.c file which is autogenerated when the
Compile button is clicked and the file is out-of-date relative to dialog box settings. It
includes the header files and the user’s code.

MyModel_h.c

MyModel.c

Userdefs.h

include “userdefs.h”

The program generates
macros to connect the
AEL with the C-code as
well as to simplify c
addresses.

All of the necessary
prototypes are defined
here.

A template file is used
to help the user write
the code. From then on,
only the user modifies
this file.

This file is the model.

#include “MyModel.c”

boot_senior_MyModel();
Managing Model Files 1-39

Building User-Compiled Analog Models
During the compile process the Makefile sources the hpeesofdebug.mak (or
hpeesofopt.mak) file. This file includes the autogenerated modelbuilder.mak file and
the user-editable user.mak file. The Model Builder interface executes the make
process; the user can manually build the program with the following command:

hpeesofmake -f hpeesofdebug.mak <target>

where <target> is one of the following:

Figure 1-3. Makefile Relationship.

compile_only compile only the active model.

link_only link without compiling anything.

compile_and_link compile the active file and link everything.

update_only compile the active and any out-of-date files (including
those in user.mak).

update_and_link compile the active and any out-of-date files (including
those in user.mak) and then link.
1-40 Managing Model Files

Accessing Dynamically Loaded Devices
When you create a dynamically-loaded device from ADS, everything is handled
automatically. However a dynamically-loaded device, by default, is only accessible
within the project in which it is created. The procedure that follows describes how to
make a device available to other projects or users.

1. The simulator has a default list of directories to search, when looking for
dynamically-loaded devices, as follows:

../networks

$HOME/hpeesof/circuit/lib.$ARCH

$HPEESOF_DIR/custom/circuit/lib.$ARCH

$HPEESOF_DIR/circuit/lib.$ARCH

These directories are searched in the order listed. Change the default path by
setting the variable EESOF_MODEL_PATH in either of the following ways:

$HPEESOF_DIR/custom/config/hpeesofsim.cfg

$HOME/hpeesof/config/hpeesofsim.cfg

For example (the default setting), see the entry in:

$HPEESOF_DIR/config/hpeesofsim.cfg

2. Copy the dynamically-loaded device to one of the directories listed in
EESOF_MODEL_PATH (see step 1).

3. In the directory where the dynamically-loaded device was copied, the following
command must be executed:

hpeesofsim -X

This will start the simulator, but instead of running a simulation, the current
directory will be scanned for dynamically-loaded devices, and an index file
(deviceidx.db) will be created. Copying a dynamically-loaded device to a directory is
not enough. The directory dynamically-loaded device index must also be updated to
include the new device. If this is not done, the simulator will be unable to locate the
dynamically-loaded device. No simulator licenses of any type are required for this.
Accessing Dynamically Loaded Devices 1-41

Building User-Compiled Analog Models
Note To run hpeesofsim, you must have$HPEESOF_DIR/bin in $PATH, and you
must also have set the appropriate environment variable to tell your system about
the ADS shared libraries/DLLs.
1-42 Accessing Dynamically Loaded Devices

Chapter 2: Creating Linear Circuit Elements
This chapter describes creating linear elements through the use of examples. A linear
element differs from a nonlinear element in that a linear element contains only linear
elements while a nonlinear element can contain both linear and nonlinear elements.

Deriving S-Parameter Equations
One way to characterize a circuit element is by its S-parameters. To help you derive
the S-parameters, refer to the following book: Microwave Transistor Amplifiers by
Guillermo Gonzalez (Englewood Cliffs: Prentice-Hall, Inc., 1984).

Begin the process of deriving the S-parameters by examining the circuit
configurations shown in Figure 2-1. Although this example shows 2-port
S-parameters, the technique is the same for elements with a greater number of ports.

Figure 2-1. 2-port network

Alternative, but equivalent, expressions for S11 and S22 are

S11 = (Z1 − ZO)/(Z1 + ZO)

S22 = (Z2 − ZO)/(Z2 + ZO)

where

ZO is the normalizing impedance for the circuit (usually 50 ohms)

Z1 is the impedance looking into port 1 when port 2 is terminated with ZO

Z2 is the impedance looking into port 2 when port 1 is terminated with ZO

S11 = V1 − 1
S21 = V2

S22 = V2´ − 1
S12 = V1´

V1´ V2´
Deriving S-Parameter Equations 2-1

Creating Linear Circuit Elements
For example, consider a grounded pi-section resistive attenuator as shown in
Figure 2-2. Inserting Figure 2-2 into the two-port network in Figure 2-1 results in
Figure 2-3.

Figure 2-2. Schematic for pi-section resistive attenuator

Figure 2-3. Resulting circuit schematic
2-2 Deriving S-Parameter Equations

Using Figure 2-3, the following relations are defined:

YA1 = 1.0/R3 + 1.0/ZO

ZA1 = 1.0/YA1

ZB1 = R2 + ZA1

Because the network is symmetrical, the following relations also hold:

YA2 = 1.0/R1 + 1.0/ZO

ZA2 = 1.0/YA2

ZB2 = R2 + ZA2

From the definition of Z1 and Z2:

Z1 = (R1• ZB1)/(R1 + ZB1)

Z2 = (R3 • ZB2)/(R3 + ZB2)

The S-parameters are obtained from the following equations:

S11 = (Z1 − ZO)/(Z1 + ZO)

S22 = (Z2 − ZO)/(Z2 + ZO)

S12 = S21 = (2.0 / ZO)/(1.0 / ZA1+1.0 / ZA2 + R2 / (ZA1• ZA2))

These basic equations are sufficient to write the C function for the element.
Deriving S-Parameter Equations 2-3

Creating Linear Circuit Elements
Deriving Y-Parameter Equations
Y-parameters equations can be used to describe a user-defined element as an
alternative to S-parameter equations. Figure 2-4 shows Y-parameters for a resistor
connected between two ports; Y-parameter definitions follow the figure.

Figure 2-4. Y-parameters for a 2-port resistor connection

In general,

With V2 equal to zero, V1 = I1R, which is also equal to −I2R. Y11 reduces to 1/R and
Y21 to −1/R. Setting V1 to zero, V2 = I2R =−I1R. The expressions for Y22 and Y12 are
1/R and −1/R, respectively. The resultant Y-parameter matrix is:

Y11

I1
V1

2V 0=

= Y21

I2
V1

2V 0=

=

Y12

I1
V2

1V 0=

= Y22

I2
V2

1V 0=

=

Y[] 1 R⁄ 1 R⁄–

1 R⁄– 1 R⁄
=

2-4 Deriving Y-Parameter Equations

The following code is a portion of the example file:

/***
/
define EPS 1.0e-8
/*
 * This example shows direct Y-parameter loading, instead of S-parameters.
 * For some elements, admittance parameters are easier to derive than
 * scattering parameters. For a series resistor, the admittance matrix is
 * as follows:
 * | g -g|
 * |Y| = |-g g| where g = 1 / R
 *
 * ELEMENT U2PD Id n1 n2 R=#
 */
static boolean u2pd_y(
UserInstDef *userInst,
double omega,
COMPLEX *yPar)
{

 double res, cond;
 res = userInst->pData->value.dVal * get_runit(userInst->eeElemInst);
 if (res < EPS)

 res = EPS;
cond = 1.0 / res;
yPar[0].real = yPar[3].real = cond;

 yPar[1].real = yPar[2].real = -cond;
yPar[0].imag = yPar[1].imag = yPar[2].imag = yPar[3].imag = 0.0;

 return TRUE;

}
#undef EPS
/***
/

Deriving Y-Parameter Equations 2-5

Creating Linear Circuit Elements
Coding a Linear Element
Your circuit simulator includes examples of linear user-compiled models. You can
follow the same style in your modules. You can define only one model per module.
Every model includes a *_h.c file, which contains macros, type definitions, and
interface function declarations. If you are interested you can study this file to learn
how dialog box settings map to the c-code. Note that the file is automatically
generated so any changes made directly to the file will be lost.

To create a linear element, perform the following steps:

1. Define the element from the parameters page and define the number of external
pins from the Symbol View (accessed from the Model Code tab).

2. Write the function to return the linear response. The linear behavior is
characterized by a linear analysis function that you will write; this corresponds
to the compute_y function pointer in the UserElemDef structure (already defined
in the template code file):

boolean (*compute_y)(UserInstDef *pInst, double omega, COMPLEX *yPar)

This function must return TRUE if successful, FALSE otherwise. This function
should be capable of working at ω = 0, especially if it is used for convolution.
You can use Y-parameters directly, or compute S-parameters and call the
supplied s_y_convert function to obtain Y-parameters:

extern boolean s_y_convert(COMPLEX *inPar, COMPLEX *outPar, int
direction, double rNorm, int size)
2-6 Coding a Linear Element

3. Write the function to return the linear noise response. The linear noise behavior
is characterized by a noise analysis function; this corresponds to the compute_n

function pointer (already defined in the template code file):

boolean (*compute_n)(UserInstDef *pInst, double omega, COMPLEX *yPar,
COMPLEX *nCor);

It must compute the N×N COMPLEX noise correlation matrix using the passed
arguments omega and yPar array. The Code Options dialog box setting will set
this to NULL if the element is noiseless. The function must return TRUE if
successful, FALSE otherwise.

Thermal noise generated by a user-defined passive n-port element (where n is
between 1 and 20) at some element temperature tempC deg . Celsius can be
included in the nodal noise analysis of the parent network by calling the
provided function:

boolean passive_noise(COMPLEX *yPar, double tempC, int numNodes, COMPLEX
*nCor)

from the element’s compute_n function.

For an active 3-terminal 2-port element, if the conventional 2-port noise
parameters (minimum noise figure, optimum source reflection coefficient,
effective noise resistance) are available through a measured data file, the 2 × 2
COMPLEX noise correlation matrix required by compute_n can be obtained
using the provided function:

boolean active_noise (COMPLEX *yPar, NParType *nPar, int numFloatPins,
COMPLEX *nCor)

numFloatPins is either 3 for floating reference pin, or 2 for grounded reference
pin. You must fill the noise parameters into the nPar structure.
Coding a Linear Element 2-7

Creating Linear Circuit Elements
4. If the element needs special pre-analysis processing, such as reading
data/technology files, the pre_analysis pointer must be set to an appropriate
processing function. The Code Options dialog box value will determine whether
this pointer is set to NULL or to the pre_analysis function. The function must
return TRUE if successful, FALSE otherwise.

5. Before the beginning of a new circuit analysis, you must write the function for
any cleanup or post-processing required by the element (such as freeing
memory or writing an output file) and set the Post-Analysis Function check box
in the Code Options dialog. The function must return TRUE if successful, FALSE

otherwise.

6. To allow detailed or extra information in your user-defined element definition,
the pointer field seniorData can be used to point to an arbitrary structure.
2-8 Coding a Linear Element

Pi-Section Resistive Attenuator

The steps in the preceding section “Coding a Linear Element” on page 2-6 are
described for the grounded pi-section resistive attenuator example U2PA in the
following sections.

Element Definition

The array U2PA (with static or module scope) defines the parameters of the U2PA
element. The c code is automatically generated by the information in the dialog box.
Coding a Linear Element 2-9

Creating Linear Circuit Elements
The corresponding c-headers are automatically generated:

#define R1_P userInst->pData[0].value.dVal
#define R2_P userInst->pData[1].value.dVal
#define R3_P userInst->pData[2].value.dVal
static UserParamType
U2PA_parms[] =
{

{“R1”, REAL_data}, {“R2”, REAL_data}, {“R3”, REAL_data}
};
static UserElemDef U2PA_ELEMENTS[] =
{

 “U2PA”, /* modelName */
 NUM_EXT_NODES, /* # of external nodes */

siz(U2PA_PARMS), /* # of parameters */
U2PA_PARMS, /* # of parameter structure */
PRE_ANALYSIS_FCN_PTR, /* pre-analysis fcn ptr */

 COMPUTE_Y_FCN_PTR, /* Linear model fcn ptr */
COMPUTE_N_FCN_PTR, /* Linear noise model fcn ptr */

 POST_ANALYSIS_FCN_PTR, /* post-analysis fcn ptr */
 NULL, /* nonlinear structure ptr */
 NULL, /* User-defined arb. data structure */

};

It is up to the user to write the appropriate code for the compute_y and compute_n

functions.
2-10 Coding a Linear Element

Defining Variables

Begin by defining the variables and their data types. The S-parameter equations
derived in Figure 2-3 provide the basis for the needed variables. The equations are
repeated here:

YA1 = 1.0/R3 + 1.0/ZO

ZA1 = 1.0/YA1

ZB1 = R2 + ZA1

YA2 = 1.0/R1 + 1.0/ZO

ZA2 = 1.0/YA2

ZB2 = R2 + ZA2

Z1 = (R1 × ZB1)/(R1 + ZB1)

Z2 = (R3 × ZB2)/(R3 + ZB2)

S11 = (Z1 - ZO)/(Z1 + ZO)

S22 = (Z2 - ZO)/(Z2 + ZO)

S12 = S21 = (2.0 / ZO)/(1.0 / ZA1+1.0 / ZA2 + R2/(ZA1 • ZA2))

The resulting declarations are:

double YA1, YA2;
double ZA1, ZA2, ZB1, ZB2;
double Z1, Z2;
COMPLEX S[4];
Coding a Linear Element 2-11

Creating Linear Circuit Elements
Implementing S-Parameter Equations

Implement the equations by performing the following steps:

1. The parameters are available via macro definitions as the parameter name,
with an appended _P:

R1 = R1_P;
R2 = R2_P;
R3 = R3_P;

2. Include code to check the resistance values and protect against division by zero.

In this example, the expressions YA1 and YA2 demonstrate the need to check data
values. If R1 or R3 has a value of zero, a fatal division by zero error condition will
result.

To protect against division by zero, limit the lower value of all input parameters to
an arbitrarily low value. For easy use, assign the value to a C macro, for example,
EPS to mean 10-8.

#define EPS 1.0E-8
if (R1 < EPS)

R1 = EPS;
if (R2 < EPS)

R2 = EPS;
if (R3 < EPS)

R3 = EPS;
2-12 Coding a Linear Element

3. Insert code to define the equations. Note that the 2×2 Y-parameters to be
returned in the yPar[0..3] locations must be in row order, for example, Y11,
Y12, Y21 and Y22.

S[3].imag = S[2].imag = S[1].imag = S[0].imag = 0.0; /* imag part */
YA1 = 1.0 / R3 + 1.0 / ZO;
ZA1 = 1.0 / YA1;
ZB1 = R2 + ZA1;
Z1 = (R1 * ZB1) / (R1 + ZB1);
S[0].real = (Z1 - ZO) / (Z1 + ZO); /* S11 real */

YA2 = 1.0 / R1 + 1.0 / ZO;
ZA2 = 1.0 / YA2;
ZB2 = R2 + ZA2;
Z2 = (R3 * ZB2) / (R3 + ZB2);
S[3].real = (Z2 - ZO) / (Z2 + ZO); /* S22 */
S[2].real = S[1].real = (2.0/ZO) /
(1.0/ZA1 + 1.0/ZA2 + R2/(ZA1 * ZA2));

/* convert S[2x2] -> yPar[2x2] */
return s_y_convert(S, yPar, 1, ZO, 2);

return status;
Coding a Linear Element 2-13

Creating Linear Circuit Elements
Adding Noise Characteristics

The noise analysis function pointer compute_n for passive elements in this example is
set to thermal_n , which computes thermal noise of the element item at the simulator
default temperature of 27.0°C, as shown below.

#define STDTEMP 27.0
/*
 * Thermal noise model at default temperature (27.0 deg.C) for any
 * n-terminal linear element
 */
static boolean thermal_n(
UserInstDef *userInst,

double omega,
COMPLEX *yPar,
COMPLEX *nCorr)

{
UserElemDef *userDef = userInst->userDef;

return passive_noise(yPar, STDTEMP, userDef->numExtNodes, nCorr);
}

The passive_noise function uses the supplied N×N Y-parameters of an N-terminal
element and temperature to compute the N×N complex noise correlation matrix.

It is possible to compute thermal noise at variable temperatures by adding a
temperature parameter, which could be either REAL_data or a MTRL_data reference, to
the element definition.

The next step is compiling and linking the C code. Refer to Chapter 1, Building
User-Compiled Analog Models.
2-14 Coding a Linear Element

Transmission Line Section
This example will show how to derive an S-parameter matrix for a general
transmission line section, then show how to apply this to the case of a coaxial cable.
The end result will be an element that can produce an S-parameter matrix given
physical dimensions.

Deriving an S-Parameter

The ABCD matrix for a general section of lossless transmission line is:

From Microwave Transistor Amplifiers by G. Gonzalez, the conversion from an ABCD
to an S-matrix is as follows:

where:

and

.

Define as . Then .

A B
C D

2πL
λ

 cos jZ 2πL

λ

 sin

j
Z
---- 2πL

λ

 sin
2πL

λ

 cos

=

S11 S12

S21 S22

A′ B′ C′– D′–+
∆

-- 2 A′D′ B′C′–()•
∆

2
∆
--- A′– B′ C′– D′+ +

∆

=

A′ A 2πL
λ

 C′cos CZo j Z

Zo

 2πL
λ

 sin= = = =

B′ B
Zo
------ j Z

Zo

 sin
2πL

λ

 D′ D 2πL
λ

 cos= = = =

∆ A′ B′ C′ D′+ + +=

β 2π
λ

------ βL 2πL
λ

-----------=
Transmission Line Section 2-15

Creating Linear Circuit Elements
When the mathematical equations are worked out, this leaves:

and

Separating the Expressions

Because we need S-parameters in a real-imaginary format, we need to separate these
expressions into their real and imaginary parts by applying their complex conjugate:

S11 S22

j sin βL() Z
Zo

 Zo
Z

 –•

2 cos βL() j sin βL() Z
Zo

 Zo
Z

 +•+

---= =

S12 S21
2

2 cos βL() j βL() Z
Zo

 Zo
Z

 +•sin+

--= =

S11 S22

j sin βL() Z
Zo

 Zo
Z

 –•

2 cos βL() j sin βL() Z
Zo

 Zo
Z

 +•+

---= =

2 cos βL() j sin βL()–
Z
Zo

 Zo
Z

 +•

2 cos βL() j– sin βL() Z
Zo

 Zo
Z

 +•

--•
2-16 Transmission Line Section

This multiplication yields:

and

This multiplication yields:

Note that the expressions all have the same denominator, which makes them easier
to code.

Re S11[]

sin
2 βL() Z

Zo

 2 Zo
Z

2

–•

4 cos
2 βL() sin

2 βL() Z
Zo

 Zo
Z

 +
2

•+

--- Re S22[]= =

Im S11[]

2 sin βL() βL()cos
Z
Zo

 Zo
Z

 –•

4 cos
2 βL() sin

2 βL() Z
Zo

 Zo
Z

 +
2

•+

--- Im S22[]= =

S12 S21
2

2 cos βL() j sin βL() Z
Zo

 Zo
Z

 +•+

---= =

2 cos βL() j sin βL()–
Z
Zo

 Zo
Z

 +•

2 cos βL() – j sin βL() Z
Zo

 Zo
Z

 +•

--•

Re S21[] 4cos βL()

4 cos
2 βL() sin

2 βL() Z
Zo

 Zo
Z

 +
2

•+

--- Re S12[]= =

Im S21[]

2 sin βL()–
Z
Zo

 Zo
Z

 –•

4 cos
2 βL() sin

2 βL() Z
Zo

 Zo
Z

 +
2

•+

--- Im S12[]= =
Transmission Line Section 2-17

Creating Linear Circuit Elements
Algorithms
Let us go through an algorithm with an example to ensure that it is correct.

Take Z = 50 Ω, Zo = 50 Ω, and L = λ. Then βL = 2 π. This yields:

Another example: Z = Zo = 50 Ω, β L = π /2 (90o)

The preceding expressions can be used with any transmission line section as long as
b (the propagation constant), Z (the impedance), and L (the length) are known.

Re S11[] 0. 2π()sin(0)= =

Im S11[]
2 2π() 2π() 50

50

 50
50

 –•cossin

4 cos
2

2π() 2
2π() 1 1+()2•sin+

--- 0= =

Re S21[] 4cos 2π()

4 cos
2

2π() sin
2

2π() 1 1+()2•+
--- 1= =

Im S21[] 2 sin 2π() 1 1+()•–

4 cos
2

2π() sin
2

2π() 1 1+()2•+
--- 0= =

Re S11[]

2 π
2

 1
2

1
2

–()•sin

4 cos
2 π

2

 sin
2 π

2

 1 1+()2•+

-- 0= =

Im S11[]
2

π
2

 π
2

 cos 1 1–()•sin

4 cos
2 π

2

 sin
2 π

2

 1 1+()2•+

-- 0= =

Re S21[]
4cos

π
2

4 cos
2 π

2

 sin
2 π

2

 1 1+()2•+

-- 0= =

Im S21[]
2

π
2

 1 1+()–

4 cos
2 π

2

 sin
2 π

2

 1 1+()2•+

-- 1–= =
2-18 Algorithms

Applying a Problem to the Coaxial Cable Section

The impedance of a coaxial cable is defined by:

where:

Z = impedance

 = characteristic impedance of dielectric =

B = outside diameter

A = inside diameter

The propagation constant is defined by:

Therefore, the required parameters are A, B, L, and Er.

Z η
2π
------ln B

A

 =

η
µo
ε

2π
λ

------ where λ speed of light in vacuum

Er FREQ•
--=β =
Algorithms 2-19

Creating Linear Circuit Elements
The U2PB example in U2PB.c is an implementation of the above. The relevant
defining data structures are shown below:

static UserParamType
U2PB_parms[] =
{

{“A”, REAL_data}, {“B”, REAL_data}, {“L”, REAL_data},
{“K”, REAL_data}

};

static UserElemDef U2PB_ELEMENTS[] =
{

 “U2PB”, /* modelName */
 NUM_EXT_NODES, /* # of external nodes */
 siz(U2PB_PARMS), /* # of parameters */

U2PB_PARMS, /* # of parameter structure */
 PRE_ANALYSIS_FCN_PTR, /* pre-analysis fcn ptr */
 COMPUTE_Y_FCN_PTR, /* Linear model fcn ptr */
 COMPUTE_N_FCN_PTR, /* Linear noise model fcn ptr */
 POST_ANALYSIS_FCN_PTR, /* post-analysis fcn ptr */
 NULL, /* nonlinear structure ptr */

NULL, /* User-defined arb. data structure */
};
2-20 Algorithms

The a, b , len , and k values are obtained from the circuit through the automatically
defined macros:

a = A_P;

b = B_P;

len = L_P;

k = K_P;

To prevent the program from crashing, some error trapping must be done: a is
checked to be positive; b is checked to be greater than a; and, k is checked to be
greater than or equal to 1.

if (a <= 0.0 || b <= a || k < 1)
{

(void)sprintf(ErrMsg, "u2pb_y(%s): invalid params: A=%g,
B=%g,K=%g",userInst->tag, a, b, k);
send_error_to_scn(ErrMsg);
return FALSE;

}

Algorithms 2-21

Creating Linear Circuit Elements
Calculating Remaining Expressions

The impedance and wave number are then calculated:

eta = sqrt(MU0/EPS0/k);

vphase = 1.0 / sqrt(MU0 * EPS0 * k);

betal = omega * len / vphase;

z = eta * log(b / a) / 2.0 / PI;

The remaining expressions calculate the S-matrix:

zzo= z / ZO;

zoz= ZO / z;

arg1= zzo - zoz;

arg2= zzo + zoz;

denom = 4.0 * sqr (cos(betal)) + sqr (sin(betal)) * sqr (arg2);

res11 = sqr (sin(betal)) * (sqr(zzo) -sqr (zoz)) / denom;

ims11 = 2.0 * sin(betal) * cos (betal) * arg1 / denom;

res21 = 4.0 * cos(betal) / denom;

ims21 = -2.0 * sin(betal) * arg2 / denom;

S[3].real = S[0].real = res11; (defines S11 .real, S22 .real)

S[3].imag = S[0].imag = ims11; (defines S11 .imag, S22 .imag)

S[2].real = S[1].real = res21; (defines S12 .real, S21 .real)

S[2].imag = S[1].imag = ims21; (defines S12 .imag, S21 .imag)
2-22 Algorithms

Adding Noise Characteristics

Because the U2PB coaxial section is lossless, it is also noiseless; therefore, the Noise
Analysis Function check box in the Code Options dialog box is not selected.

The next step is compiling and linking the C-code. See Chapter 1, Building
User-Compiled Analog Models.
Algorithms 2-23

Creating Linear Circuit Elements
2-24 Algorithms

Chapter 3: Creating Nonlinear Circuit
Elements
This chapter describes creating nonlinear circuit elements. Nonlinear user-defined
element modeling described in this chapter is applicable to steady-state analysis only.
Refer to Chapter 4, Creating Transient Circuit Elements, for information on
modeling the transient response.

Requirements for Creating Nonlinear Elements
A nonlinear circuit element is characterized as follows:

• a linear part

• a nonlinear part

• a bias-dependent small-signal ac part

• a bias-dependent noise part

The first two are mutually exclusive partitions of the element model, while the
small-signal part is a combination. All parts can use parameter data of the element
item as well as those of any referenced items in the circuit.

The parts are coded as the following function entries in the element’s device
definition:

• analyze_lin

• analyze_nl

• analyze_ac

• analyze_ac_n
Requirements for Creating Nonlinear Elements 3-1

Creating Nonlinear Circuit Elements
Linear Part

The linear part is computed in frequency domain. The user code must compute the
branch admittances in the same way as in the linear element case (Refer to Chapter
2, Creating Linear Circuit Elements). The difference here is in the loading of the
circuit nodal admittance matrix, which must be done through the add_lin_y function
call for each contribution separately. The analyze_lin function is called once for every
sweep (frequency, power, swept variable) value. The function can be set to NULL if the
element is completely nonlinear.

Nonlinear Part

The nonlinear part is evaluated on a sample-by-sample basis of time domain pin
voltages. The device’s analyze_nl function must compute the instantaneous
nonlinear currents, charges, and their voltage derivatives. Given the user item pin
voltages—in the order of external followed by internal—the user-written code
computes the nonlinear charges at each pin and the nonlinear currents out of each
pin.

The partial derivatives of these nonlinear quantities with respect to each pin voltage
are then computed to formulate conductances and capacitances to load into the
circuit Jacobian matrix. In nonlinear analyses, the derivatives influence the rate of
convergence, but have no effect on the final steady-state solution. In addition to the
instantaneous voltages, delayed pin voltages can be obtained through the
get_delay_v function.

You may keep any static/intermediate computed data (data invariant over
subsequent time samples and iterations) with the particular element item itself.
Functions within ADS perform the required time-to-frequency transformations.
3-2 Requirements for Creating Nonlinear Elements

AC Part

The ac part linearizes the element model around the dc bias point, and returns the
small-signal frequency domain admittance and normalized noise correlation
parameters.

The dc bias is determined for the entire flattened circuit, including nonlinear user
element items, whose linear and nonlinear parts would be computed as above. Then
the device's analyze_ac function is called to load the device admittances for all its
branches (including internal) into the circuit nodal admittance matrix. If the
conductances and capacitances are frequency independent, this will be a combination
of the analyze_lin and linearized analyze_nl functions.

The analyze_ac_n function must load the bias-dependent noise current correlation
parameters (normalized to FOUR_K_TO) using the interface function add_lin_n . It is
called only if a noise measurement is required in a test bench.

The UserElemDef declaration for a nonlinear element has the compute_y function
automatically set to NULL.
Requirements for Creating Nonlinear Elements 3-3

Creating Nonlinear Circuit Elements
User-defined P-N Diode Model
This example shows how to create a nonlinear model of a P-N diode. The result is a
set of functions (available in the example PNDIODEthat provide a simplified model of
the ADS DIODE element.

The model shown in Figure 3-1 is used for the PNDIODE element.

Figure 3-1. PNDIODE element model

10
2

Vd+

-+

-

Cj(Vd)

Rj (Vd)

Qd

Id
3-4 User-defined P-N Diode Model

Defining a Nonlinear Element

For simplicity, all diode parameters are defined with the element itself in the
UserParamType array PNDIODE, instead of an indirect, shareable model form reference
(in Series IV these were referred to as data items). These definitions are entered in
the Parameters tab dialog box:
User-defined P-N Diode Model 3-5

Creating Nonlinear Circuit Elements
The associated declarations are automatically generated in the PNDIODE_h.c file:

static UserParamType
PNDIODE_parms[] =
{

 {“AREA”, REAL_data}, {“IS”, REAL_data}, {“RS”, REAL_data},
 {“N”, REAL_data}, {“TT”, REAL_data},
 {“CJO”, REAL_data}, {“VJ”, REAL_data},
 {“M”, REAL_data}, {“EG”, REAL_data},
 {“XTI”, REAL_data}, {“KF”, REAL_data},
 {“AF”, REAL_data}, {“FC”, REAL_data},
 {“BV”, REAL_data}, {“IBV”, REAL_data},
 {“FFE”, REAL_data}

};

The associated AEL create_item declarations are also generated in the PNDIODE.ael

file.

The three function entries required in a user nonlinear device definition are declared
automatically:

static boolean analyze_lin(UserInstDef *userInst, double omega);

static boolean analyze_nl(UserInstDef *userInst, double *vPin);

static boolean analyze_ac(UserInstDef *userInst, double *vPin, double
omega)
3-6 User-defined P-N Diode Model

The diode has one internal pin between the linear RS and the nonlinear R || C
representing the junction. The device definition is (again, automatically-generated):

#define ANALYZE_NL_FCN_PTR analyze_nl
#define ANALYZE_LIN_FCN_PTR analyze_lin
#define ANALYZE_AC_FCN_PTR analyze_ac
#define NUM_NONLINEAR_INT_NODES 1
#define ANALYZE_AC_N_FCN_PTR NULL
static UserNonLinDef
ANALYZE_NL_DEF_PTR =
{

 NUM_NONLINEAR_INT_NODES, /* numIntNodes */
 ANALYZE_LIN_FCN_PTR, /* analyze_lin() */
 ANALYZE_NL_FCN_PTR, /* analyze_nl() */

 ANALYZE_AC_FCN_PTR, /* analyze_ac() */
 NULL, /* Nonlin modelDef (user can change) */

 ANALYZE_AC_N_FCN_PTR, /* analyze_ac_n() */
};
User-defined P-N Diode Model 3-7

Creating Nonlinear Circuit Elements
The entry for the diode element definition itself is completed, using its parameters
and device definition:

#define NUM_EXT_NODES 2
#define ANALYZE_NL_DEF_PTR analyze_nl_def_ptr
#define COMPUTE_Y_FCN_PTR NULL
#define PRE_ANALYSIS_FCN_PTR NULL
#define POST_ANALYSIS_FCN_PTR NULL
#define ANALYZE_TR_FCN_PTR NULL
#define ANALYZE_AC_N_FCN_PTR NULL
#define COMPUTE_N_FCN_PTR NULL
#define PNDIODE_PARMS PNDIODE_parms
#define PNDIODE_ELEMENTS PNDIODE_elements
static UserElemDef PNDIODE_ELEMENTS[] =
{

 “PNDIODE”, /* modelName */
 NUM_EXT_NODES, /* # of external nodes */

 siz(PNDIODE_PARMS), /* # of parameters */
 PNDIODE_PARMS, /* # of parameter structure */
 PRE_ANALYSIS_FCN_PTR, /* pre-analysis fcn ptr */
 COMPUTE_Y_FCN_PTR, /* Linear model fcn ptr */
 COMPUTE_N_FCN_PTR, /* Linear noise model fcn ptr */
 POST_ANALYSIS_FCN_PTR, /* post-analysis fcn ptr */
 &ANALYZE_NL_DEF_PTR, /* nonlinear structure ptr */
 NULL, /* User-defined arb. data structure */

};
3-8 User-defined P-N Diode Model

Implementation of the preceding functions is described next. (Error message
reporting, while useful for debugging, is not shown below.) The C macros
conveniently centralize parameter indexing:

#define AREA_P userInst->pData[0].value.dVal
#define IS_P userInst->pData[1].value.dVal
#define RS_P userInst->pData[2].value.dVal
#define N_P userInst->pData[3].value.dVal
#define TT_P userInst->pData[4].value.dVal
#define CJO_P userInst->pData[5].value.dVal
#define VJ_P userInst->pData[6].value.dVal
#define M_P userInst->pData[7].value.dVal
#define EG_P userInst->pData[8].value.dVal
#define XTI_P userInst->pData[9].value.dVal
#define KF_P userInst->pData[10].value.dVal
#define AF_P userInst->pData[11].value.dVal
#define FC_P userInst->pData[12].value.dVal
#define BV_P userInst->pData[13].value.dVal
#define IBV_P userInst->pData[14].value.dVal
#define FFE_P userInst->pData[15].value.dVal
User-defined P-N Diode Model 3-9

Creating Nonlinear Circuit Elements
The linear contribution is just from the series resistor RS between pins 0 and 1. This
is coded in the analyze_lin function:

static boolean analyze_lin (
 UserInstDef *userInst,
 double omega)

{
 boolean status;
 COMPLEX y;
 UserParamData *pData = userInst->pData;

 y.real = y.imag = 0.0;
 if (RS_P > RMIN)

 y.real = AREA_P / RS_P;
 else

 y.real = GMAX;

 status = add_y_branch(userInst, 0, 2, y);

 if (!status)
 {

 (void)sprintf(ErrMsg, “analyze_lin(%s) -> add_lin_y() failed”,
 userInst->tag);

 send_error_to_scn(ErrMsg);
 }

return status;
}

This function is also called from the small-signal analyze_ac function described later.
3-10 User-defined P-N Diode Model

The nonlinear device model is coded as a common function (diode_nl_iq_gc that
follows) so that it can be called from both analyze_nl and analyze_ac . It computes the
nonlinear junction charge, current and their derivatives with respect to the junction
voltage.

static void diode_nl_iq_gc (
 UserInstDef *userInst, /* Changed from SIV to be consistent w/CUI */
 double *vPin,
 double *id,
 double *qd,
 double *gd,
 double *capd)
{

 double vd, csat, vte, evd, evrev;
double exparg;

 double fcpb, xfc, f1, f2, f3;
 double czero, arg, sarg, czof2;
 UserParamData *pData = userInst->pData;

 csat = IS_P * AREA_P;
 vte = N_P * VT;
 vd = vPin[2] - vPin[1]; /* junction voltage */

 /*
 * compute current and derivatives with respect to voltage
 */

 if (vd >= -5.0*vte)
 {

 exparg = (vd/vte < 40.0) ? vd/vte : 40.0;
evd = exp(exparg);

 *id = csat * (evd - 1.0) + GMIN * vd;
 *gd = csat * evd / vte + GMIN;

}
 else

{
 *id = -csat + GMIN * vd;
 *gd = -csat / vd + GMIN;
 if (BV_P != 0.0 && vd <= (-BV_P+50.0*VT))

{
 exparg = (-(BV_P+vd)/VT < 40.0) ? -(BV_P+vd)/VT : 40.0;

 evrev = exp(exparg);
 *id -= csat * evrev;

*gd += csat * evrev / VT;
}

 }

 /*
User-defined P-N Diode Model 3-11

Creating Nonlinear Circuit Elements
 * charge storage elements
 */
 fcpb = FC_P * VJ_P;

czero = CJO_P * AREA_P;
 if (vd < fcpb)
 {

 arg = 1.0 - vd / VJ_P;
 sarg = exp(-M_P * log(arg));

*qd = TT_P * (*id) + VJ_P * czero * (1.0 - arg * sarg)
 / (1.0 - M_P);

*capd = TT_P * (*gd) + czero * sarg;
 }
 else
 {

xfc = log(1.0 - FC_P);
 /* f1 = vj*(1.0-(1.0-fc)^(1.0-m))/(1.0-m) */

f1 = VJ_P * (1.0-exp((1.0-M_P)*xfc)) / (1.0-M_P);

 /* f2 = (1.0-fc)^(1.0+m) */
f2 = exp((1.0+M_P)*xfc);

 /* f3=1.0-fc*(1.0+m) */
f3 = 1.0 - FC_P * (1.0+M_P);
czof2 = czero / f2;

 *qd = TT_P * (*id) + czero * f1 + czof2 * (f3 * (vd - fcpb) +
 (M_P / (VJ_P + VJ_P)) * (vd * vd - fcpb * fcpb));

*capd = TT_P * (*gd) + czof2 * (f3 + M_P * vd / VJ_P);
 }
} /* diode_nl_iq_gc() */
3-12 User-defined P-N Diode Model

The following equation is used for the diode current in the forward bias mode:

The derivative of the diode current with respect to the junction voltage is:

For the case Vd < FC • VJ, the total charge and large-signal incremental capacitance
expressions are:

Id

Id Vd() Is e

Vd
Vte

1–

10
12– Vd•+=

dId
dVd
------------ Is e

Vd
Vte

•
Vte

----------------------- 10
12–

+=

Qd Vd() TT Id• VJ CJO•
1 M–()

--------------------------- 1 1
Vd
VJ
--------–

1 M–

–•+=

Cd Vd()
dQd
dVd
------------ TT

dId
dVd
------------• CJO 1

Vd
VJ
--------–

M–

+= =
User-defined P-N Diode Model 3-13

Creating Nonlinear Circuit Elements
The analyze_nl function that follows loads the nonlinear currents, charges at each
pin, and the nonlinear conductances, capacitances for each branch. Note that each G,
C component has four Jacobian matrix contributions, two diagonals and two
off-diagonals.

static boolean analyze_nl (
 UserInstDef *userInst,
 double *vPin)
{
 double id, gd; /* current, conductance */
 double qd, capd; /* charge, capacitance */
 boolean status;
 char *pMsg = NULL;

diode_nl_iq_gc(userInst, vPin, &id, &qd, &gd, &capd);
 /*
 * load nonlinear pin currents out of each terminal and
 * nonlinear charges at each terminal.
 */
 status = add_nl_iq(userInst, 1, -id, -qd) &&
 add_nl_iq(userInst, 2, id, qd);
 if (!status)
 {
 pMsg = “add_nl_iq()”;
 goto END;
 }

 /* Add nonlinear conductance, capacitance
 * 0 1 2
 * 0
 * 1 Y Y
 * 2 Y Y
 */
 status = add_nl_gc(userInst, 1, 1, gd, capd) &&
 add_nl_gc(userInst, 1, 2, -gd, -capd) &&
 add_nl_gc(userInst, 2, 1, -gd, -capd) &&
 add_nl_gc(userInst, 2, 2, gd, capd);

 if (!status)
 pMsg = “add_nl_gc()”;

 END:
 if (pMsg)
 {
 (void)sprintf(ErrMsg, “Error: PNDIODE: analyze_nl(%s) -> %s”,
userInst->tag, pMsg);
 send_error_to_scn(ErrMsg);
 }
3-14 User-defined P-N Diode Model

 return status;
} /* analyze_nl() */

The analyze_ac function that follows characterizes the PNDIODE’s bias-dependent
small-signal ac behavior. It calls analyze_lin to load the linear part, then loads the
linearized admittances obtained from the nonlinear junction conductance and
capacitance at the DC bias point.

static boolean analyze_ac (
 UserInstDef *userInst,
 double *vPin,
 double omega)
{
 COMPLEX y;
 double id, gd; /* current, conductance */
 double qd, capd; /* charge, capacitance */
 boolean status;

 /*
 * Add linearized conductance, susceptance
 * 0 1 2
 * 0 G G
 * 1 Y Y
 * 2 G Y Y
 */
 if (!analyze_lin(userInst, omega))
 return pw;

 diode_nl_iq_gc(userInst, vPin, &id, &qd, &gd, &capd);
 y.real = gd; y.imag = omega * capd;
 status = add_y_branch(userInst, 1, 2, y);
 if (!status)
 {
 (void)sprintf(ErrMsg, “Error: PNDIODE: analyze_ac(%s) -> add_lin_y”,
userIns
t->tag);
 send_error_to_scn(ErrMsg);
 }
 return status;
} /* analyze_ac() */
User-defined P-N Diode Model 3-15

Creating Nonlinear Circuit Elements
The analyze_ac_n function that follows models the PNDIODE’s noise behavior in a
linear analysis. It loads the device's thermal noise, and its bias-dependent shot and
flicker noise contributions through the interface primitive function add_lin_n . The
static function add_n_branch loads a branch contribution symmetrically into the
circuit’s indefinite noise-current correlation matrix.

/*--*/
static boolean add_n_branch(
 UserInstDef *userInst,
 int n1,
 int n2,
 COMPLEX iNcorr)
{
 boolean status = TRUE;

 status = add_lin_n(userInst, n1, n1, iNcorr) &&
 add_lin_n(userInst, n2, n2, iNcorr);
 if (status)
 {
 iNcorr.real = -iNcorr.real; iNcorr.imag = -iNcorr.imag;
 status = add_lin_n(userInst, n1, n2, iNcorr) &&
 add_lin_n(userInst, n2, n1, iNcorr);
 }
 return status;
}

/*--*/
static boolean analyze_ac_n (
 UserInstDef *userInst,
 double *vPin,
 double omega)
{
 double id, gd; /* current, conductance */
 double qd, capd; /* charge, capacitance */
 boolean status;
 COMPLEX thermal, dNoise; /* noise-current correlation admittance */
 double kf, gs, tempScale;
 char *pMsg = NULL;
 UserParamData *pData = userInst->pData;

 diode_nl_iq_gc(userInst, vPin, &id, &qd, &gd, &capd);

 tempScale = DEV_TEMP / NOISE_REF_TEMP;

 dNoise.imag = thermal.imag = 0.0;

 if (RS_P > RMIN)
3-16 User-defined P-N Diode Model

 gs = AREA_P / RS_P;
 else
 gs = GMAX;
 thermal.real = tempScale * gs;

 id = fabs(id);
 kf = fabs(KF_P);
 /* shot noise */
 dNoise.real = 2.0 * CHARGE * id;
 /* flicker noise */
 if (id > 0.0 && omega > 0.0 && kf > 0.0)
 dNoise.real += kf * pow(id, AF_P) * pow(omega/TWOPI, -FFE_P);

 dNoise.real /= FOUR_K_TO;

 status = add_n_branch(userInst, 0, 2, thermal) &&
 add_n_branch(userInst, 1, 2, dNoise);
 if (!status)
 pMsg = “add_lin_n()”;

 if (pMsg)
 {
 (void)sprintf(ErrMsg, “Error: analyze_ac_n(%s) -> %s”, userInst->tag,
pMsg);
 send_error_to_scn(ErrMsg);
 }
 return status;
} /* analyze_ac_n() */

The next step is compiling and linking the code. Refer to “Creating the Code and
Compiling the Model” on page 1-9.

Referencing Data Items

Refer to “Referencing Data Items” on page 1-29.

Displaying Error/Warning Messages

Refer to “Displaying Error/Warning Messages” on page 1-30.
User-defined P-N Diode Model 3-17

Creating Nonlinear Circuit Elements
3-18 User-defined P-N Diode Model

Chapter 4: Creating Transient Circuit
Elements
This chapter describes the steps necessary for creating transient circuit elements.

Requirements for Creating Transient Elements
A transient model can be created for either a linear or nonlinear element. A transient
element can have additional nodes internal to the element, as specified by the value
of numIntNodes (set in the Code Options dialog field No. of internal nodes under the
Transient Function check box. If a nonlinear model (using UserNonLinDef) is defined
for the element, the numIntNodes in that structure must match this definition.

Special routines are available to simplify the use of ideal resistors, capacitors,
inductors, and transmission lines within a transient element. For all but resistors,
the number of these elements must be predefined using numCaps, numInds , and
numTlines so the circuit simulator engine can perform the appropriate allocations.
These values are entered in the appropriate fields in the Code Options dialog box.

The time-domain response is evaluated from the instantaneous pin voltages. The
device’s analyze_tr function must compute the instantaneous nonlinear currents,
charges and their voltage derivatives. Given the instantaneous user item pin voltages
(external first, followed by internal, starting at zero), the user-defined code computes
the nonlinear charges at each pin and the nonlinear currents out of each pin. The
partial derivatives of these nonlinear quantities with respect to each pin voltage are
then computed to formulate conductances and capacitances to load into the circuit
Jacobian matrix.

If P is the total number of pin voltages, formulate nonlinear current and charge at
each pin n as follows:

rn (t) = f (v0(t), v1(t), ... , vP-1 (t))

where rn is the pin current or charge response.

These responses and their voltage derivatives (nonlinear conductances and
capacitances) must be computed and loaded using the add_tr_iq and add_tr_gc

functions, respectively.
Requirements for Creating Transient Elements 4-1

Creating Transient Circuit Elements
Using Resistors, Capacitors, and Inductors

Special routines are available to simplify the use of ideal resistors, capacitors,
inductors, and transmission lines within a transient element. These routines can be
called from within the user-written analyze_tr function. For all but resistors, the
number of these elements must be predefined using numCaps, numInds and numTlines ,
so the circuit simulator engine can perform the appropriate allocations.

If the requested number of elements is not used, an error message is generated and
the analysis fails. The following code example could be used within an analyze_tr

function to implement a transient model for the element model shown in Figure 4-1.
Naturally, values for these components could be calculated from the UserInstDef

parameters that are passed into the function.

boolean example1_tr (UserInstDef *pInst, double *vPin)
{

boolean status;
status = add_tr_resistor(pInst, 0, 2, 50.0) &&

add_tr_resistor(pInst, 2, GND, 1000.0) &&
add_tr_capacitor(pInst, 2, 1, 10.0e-12) &&

add_tr_inductor(pInst, 2, 1, 5.0e-9);
return status;

}

Figure 4-1. Element model for transient analysis
4-2 Requirements for Creating Transient Elements

Using Transmission Lines

The fix_tr function is called just before transient analysis begins. Its only purpose is
to set up ideal transmission lines for the user. Using the add_tr_tline function,
transmission line pins and physical constants are defined. All four terminals of the
transmission line are available to the user (See Figure 4-2). Once the transmission
line is defined here, time-domain analysis of it is performed automatically without
any further action by the user in the analyze_tr function.

Figure 4-2. Four transmission line terminals

The following code sample places a lossless 50Ω transmission line with a 100 psec
delay between pins 0 and 1. An analyze_tr function is still required, even though it
doesn’t do anything—it should simply return TRUE.

boolean example2_fix (UserInstDef *pInst)
{

boolean status;
status = add_tr_tline(pInst, 0, 1, GND, GND, 50.0, 100.0e-12, 1.0);

return status;
};
boolean example2_tr (UserInstDef *pInst, DOUBLE *vPIn)
{

return TRUE;
}

 2

0 1

3

pin2(+

pin4(-)

(+)pin1

(-)pin3
z0, td, loss
Requirements for Creating Transient Elements 4-3

Creating Transient Circuit Elements
User-defined P-N Diode Model
This section shows how to extend the P-N diode example created in Chapter 3 for use
in a transient model. Only the new code and modifications required to extend this
element to a transient model are listed below. The code for this model is available in
the example PNDIODE. The model shown in Figure 4-3 is used for the PNDIODEelement.

Figure 4-3. PNDIODE element model

10
2

Vd+

-+

-

Cj(Vd)

Rj (Vd)

Qd

Id
4-4 User-defined P-N Diode Model

Defining the Transient Device

A prototype for the transient analysis function is required and is automatically
generated in the PNDIODE_h.c file when the Transient Function check box is
selected in the Code Options dialog box.

#define ANALYZE_TR_FCN_PTR analyze_tr
static boolean analyze_tr(UserInstDef *userInst, double *vPin);

A UserTranDef structure is defined for transient.

#define ANALYZE_TR_DEF_PTR analyze_tr_def_ptr
static UserTranDefstatic UserTranDef
ANALYZE_TR_DEF_PTR =
{

NUM_TRANSIENT_INT_NODES, /* numIntNodes */
NUM_TRANSIENT_CAPS, /* numCaps */
NUM_TRANSIENT_INDS, /* numInds */
NUM_TRANSIENT_TLS, /* numTlines */
USE_CONVOLUTION, /* useConvolution */
ANALYZE_TR_FCN_PTR, /* analyze_tr */
FIX_TR, /* fix_tr */

};

In the UserElemDef, a pointer to the DIODE_TR structure is added at the end via a
macro.

#define ANALYZE_TR_DEF_PTR analyze_tr_def_ptr
static UserElemDef PNDIODE_ELEMENTS[] =
{

“PNDIODE”, /* modelName */
..
&ANALYZE_NL_DEF_PTR, /* nonlinear structure ptr */
NULL, /* User-defined arb. data structure */
&ANALYZE_TR_DEF_PTR, /* transient fcn ptr */

}

User-defined P-N Diode Model 4-5

Creating Transient Circuit Elements
Transient Analysis Function

The analysis routine diode_nl_iq_gc that was written for the nonlinear model (Refer
to Chapter 3, Creating Nonlinear Circuit Elements) can also be used for the transient
model. Add to this the contribution of the series resistance and the model is complete.
The analyze_tr function that follows calls the diode_nl_iq_gc function for the
nonlinear contribution and loads them into the matrix, and then uses
add_tr_resistor to include the contribution of the series resistance.

static boolean analyze_tr(
 UserInstDef *userInst,
 double *vPin)
{

UserParamData *pData = userInst->pData;
 char *pMsg = NULL;
 boolean status;

double id, qd, gd, capd, rs;

 /* compute the nonlinear portion */
 diode_nl_iq_gc(userInst, vPin, &id, &qd, &gd, &capd);

status = add_tr_iq(userInst, 2, id, qd) &&
 add_tr_iq(userInst, 1, -id, -qd);

if (status == FALSE) goto END;

 status = add_tr_gc(userInst, 2, 2, gd, capd) &&
add_tr_gc(userInst, 2, 1, -gd, -capd) &&

 add_tr_gc(userInst, 1, 2, -gd, -capd) &&
 add_tr_gc(userInst, 1, 1, gd, capd);

 if (status == FALSE) goto END;
 /* series resistance */

if (AREA_P > 0.0)
 rs = RS_P / AREA_P;

else
 rs = 0.0;

status = add_tr_resistor(userInst, 0, 2, rs);

END:
 if (pMsg)
 {

(void)sprintf(ErrMsg, “Error: PNDIODE: analyze_tr(%s) -> %s”,
userInst->tag, pMsg);

 send_info_to_scn(ErrMsg);
 }
 return status;
} /* analyze_tr() */
4-6 User-defined P-N Diode Model

The next step is compiling and linking the code. Refer to Chapter 1, Building
User-Compiled Analog Models.

Referencing Data Items

Refer to “Referencing Data Items” on page 1-29.

Displaying Error/Warning Messages

Refer to “Displaying Error/Warning Messages” on page 1-30.
User-defined P-N Diode Model 4-7

Creating Transient Circuit Elements
4-8 User-defined P-N Diode Model

Chapter 5: Custom Modeling with
Symbolically-Defined Devices
This chapter presents a powerful capability of Advanced Design System: the ability
to create a user-defined nonlinear component which can simulate both the
large-signal and small-signal behavior of a nonlinear device, without the use of
source code.

The symbolically-defined device (SDD) is an equation-based component that enables
you to quickly and easily define custom, non-linear components. These components
are multi-port devices that can be modeled directly on a schematic. You define an
SDD by specifying equations that relate port currents, port voltages, and their
derivatives. Equations can also reference the current flowing in another device. Once
a model is defined, it can be used with any circuit simulator in Advanced Design
System. Derivatives are automatically calculated during the simulation.

Before the SDD, the techniques that were available for modeling nonlinear devices
were either limited or cumbersome. One technique was to model the device equations
using discrete components—usually resistors, capacitors, inductors, and controlled
sources. Since most simulators restrict these devices to be linear, this approach could
be used to model only the small-signal (AC) behavior of the nonlinear device, and you
could not achieve an accurate DC simulation or harmonic balance simulation. A
second approach would be to use measured data, typically S-parameters, to model the
device, but this approach, too, modeled only small-signal behavior.

The only technique previously available to develop a model that simulated both the
large-signal and small-signal behavior of a nonlinear device required writing source
code, which was a lengthy task. For example, a typical BJT model would require over
4500 lines of code, and could take an experienced engineer well over a month to write
and debug. There also is the requirement that the simulator be linked to your
compiled code.

By comparison, the SDD offers a simple, fast way to develop and modify complex
models. Equations can be modified easily, and simulation results can be compared to
measured data within Advanced Design System.

The SDD can also model high-level circuit blocks such as mixers or amplifiers. By
using a single, high-level component instead of a subcircuit of low-level devices,
simulations run more quickly. If second- and third-order effects of low-level
subcircuits need to be analyzed, the SDD can be modified to develop a more
comprehensive implementation of the circuit.
5-1

Custom Modeling with Symbolically-Defined Devices
The examples in this chapter start with a simple nonlinear resistor, then more
complex devices, like the Gummel-Poon charge-storage model of the bipolar junction
transistor, are described. With the techniques used to develop these models, you can
develop your own, custom, nonlinear components.

This chapter has the following sections:

• “Writing SDD Equations” on page 5-3 explains how to write the equations that
define an SDD.

• “Adding an SDD to a Schematic” on page 5-13 describes how to add an SDD to a
schematic and enter equations.

• “SDD Examples” on page 5-17 show how to use SDDs to define a wide range of
nonlinear circuit components.

• “Modified Nodal Analysis” on page 5-45 is a discussion of modified nodal
analysis and branch equations.

• “Error Messages” on page 5-50 lists SDD error messages and their meaning.

Detailed knowledge of microwave and RF circuit theory and of building and
analyzing circuits using Advanced Design System is assumed.
5-2

Writing SDD Equations
The symbolically-defined device is represented on the circuit schematic as an n-port
device, with up to 10 ports. The equations that specify the voltage and current of a
port are defined as functions of other voltages and currents. An example of a 2-port
SDD is shown here.

Figure 5-1. The schematic symbol for a two-port SDD

Port Variables

For each port on the SDD, there are voltage and current port variables. A variable
begins with an underscore, followed by v (for voltage) or i (for current), and the port
number. For example, current and voltage variables for port one are _i1 and _v1 ,
respectively. You can rename variables to better suit the device being modeled. In
text, vn and in are used to refer to _vn and _in .

By convention, a positive port current flows into the terminal marked +.

port 1 port 2

equations
Writing SDD Equations 5-3

Custom Modeling with Symbolically-Defined Devices
Defining Constitutive Relationships with Equations

A well-defined n port is described by n equations, called constitutive relationships,
that relate the n port currents and the n port voltages. For linear devices, the
constitutive relationships are often specified in the frequency domain (for example, as
admittances), but since the SDD is used to model nonlinear devices, its constitutive
relationships are specified in the time domain.

The constitutive relationships may be specified in either explicit or implicit
representations.

Explicit Representation

With the explicit representation, the current at port k is specified as a function of port
voltages:

An example of an explicit equation is:

In this example, the current at port 1 is calculated by dividing the voltage at port 1 by
50.

Note Each port of the SDD must have at least one equation. For an unused port n,
apply the equation I[n,0] = 0.0 (an open circuit) to the unused port.

Note Although not often utilized in standard circuit models, the explicit equation
defining the ik port current can actually be a function of any of the port voltages and
any of the other port currents for ports that are defined with implicit equations. Since
port k is being defined with an explicit equation, the ik port variable is not available
and so cannot be used to implicitly define ik.

ik f v1 v2 …vn, ,()=

I[1,0] = _v1/50

equation applies
to port 1

weighting function is 0

explicit equation equation
5-4 Writing SDD Equations

Implicit Representation

The implicit representation uses an implicit relationship between any of the port
currents and any of the port voltages:

An example of an implicit equation is:

This equation is part of the Gummel-Poon example.

If you want to use the current variable (_in) of a port in another equation, you must
define the port using an implicit equation.

A procedure for how to enter equations is in the section “Adding an SDD to a
Schematic” on page 5-13.

f k v1 v2 …vn i1 i2 …in, , , , ,() 0=

F[1,0] = vbi + ib*Rbb - vb

equation applies
to port 1

weighting function is 0

implicit equation equation
Writing SDD Equations 5-5

Custom Modeling with Symbolically-Defined Devices
Explicit Versus Implicit Representations

The explicit representation is a voltage-controlled representation and can implement
only voltage-controlled expressions. The implicit representation has no such
restriction. It can model equations that are voltage-controlled, current-controlled, or
use some other control.

Although implicit equations have no restrictions, explicit equations are more
“natural” and more efficient. The explicit representation is more natural simply
because many models are expressed in the voltage-controlled form i = f(v). The
corresponding implicit equation is i - f(v) = 0, which is less intuitive.

Explicit equations use standard nodal analysis, that is, the sum of the currents
entering and exiting a node equal zero. Implicit equations use modified nodal
analysis, which adds a branch equation and makes ik available as a variable. For
more information on modified modal analysis, refer to the section “Modified Nodal
Analysis” on page 5-45.

The explicit representation is more efficient during a simulation because it is a
voltage-controlled representation and, therefore, does not create any new variables in
the modified nodal equations. With implicit equations, for every port that uses an
implicit representation, the port current is appended to the list of branch currents
and the port equation is appended to the modified nodal analysis equations. The
result is a larger system of equations with a larger number of unknowns (for a
discussion of modified nodal analysis and branch equations, see the section “Modified
Nodal Analysis” on page 5-45).

In general, you should use the implicit representation only when the explicit
representation is insufficient. For example, for a given port n, the port current
variable _in can be used in other equation s only if port n is defined with an implicit
equation.
5-6 Writing SDD Equations

Continuity

Many of the circuit-solving algorithms used by the simulator are based on the
Newton-Raphson algorithm. Consequently, constitutive relationships should conform
to the following:

• The functions must be continuous with respect to v and i.

• Ideally, the functions should be differentiable with respect to v and i, but it is
not required.

• It is desirable if the derivatives are continuous with respect to v and i, but this
is not necessary, for example, a step discontinuity in the derivative is often
acceptable.

An example where these considerations are important is piecewise-defined devices
where the constitutive relationship changes depending on the region of operation.
The constitutive relationships should be carefully pieced together to ensure
continuous derivatives at the region boundaries. An example is given in “Full Model
Diode, with Capacitance and Resistance” on page 5-28.

Although continuous derivatives are not requires, if a constitutive relationship does
not have continuous derivatives, the simulator may have trouble converging, even at
low power levels. If you are having convergence problems with an SDD, continuous
derivatives is the first thing to check.
Writing SDD Equations 5-7

Custom Modeling with Symbolically-Defined Devices
Weighting Functions

A weighting function is a frequency-dependent expression used to scale the spectrum
of a port current.Weighting functions are evaluated in the frequency domain.

There are two predefined weighting functions. Weighting function 0 is defined to be
identically one. It is used when no weighting is desired. Weighting function 1 is
defined as jw and is used when a time derivative is desired.

You can define other weighting functions, starting with the number 2. Weighting
functions must be defined in the frequency domain. Weighting functions can, for
example, correspond to time delay or to a low-pass or high-pass filter. An example of a
time delay weighting function is

:

Be aware that the SDD will be evaluated at DC, so a user-defined weighting function
should be well behaved at jω=0. For example, you might want to use a weighting
function of 1/jω to perform time integration, but this will cause a divide-by-zero error
at DC.

A procedure for how to enter weighting functions as part of an SDD definition is in
the section “Defining a Weighting Function” on page 5-16.

e j– ω delay××
5-8 Writing SDD Equations

Weighting Function Example

To understand how the weighting functions are used, this example outlines the steps
taken to evaluate the port current of an SDD during a harmonic balance simulation.

For simplicity, consider a one-port SDD with an explicit representation for port one:

I[1,1] = f(_v1)

where f is some nonlinear function.

During a harmonic balance simulation, the simulator supplies the SDD with the
spectrum V1(ω) of the port voltage and asks the SDD for the spectrum I1(ω) of the
corresponding port current. To evaluate the current, the SDD performs four steps:

1. Perform an inverse Fourier transform on the voltage spectrum V1(ω) to obtain a
(sampled) time waveform v1(t).

2. Evaluate the nonlinearity f point by point along the time waveform. The result

is the (sampled) time waveform .

3. Perform a Fourier transform on the time waveform to obtain its spectrum

.

4. Scale the components of this spectrum using the weighting function to obtain

the spectrum of the port current.

Note The nonlinearity is evaluated in the time domain. The weighting function is
evaluated in the frequency domain.

Since multiplication by jω in the frequency domain is equivalent to time
differentiation in the time domain, in this example, the current is:

You will see this result used in “Nonlinear Capacitors” on page 5-25 and “Nonlinear
Inductors” on page 5-32, where the weighting function 1 is used to implement
nonlinear capacitors and inductors.

V1 ω() v1 t() î1 t() Î1 t() I1 ω()⇒ ⇒ ⇒ ⇒

i 1 t()

)

I 1 ω()

)

I1 ω()

i1 t() d
dt------ f v1 t()()=
Writing SDD Equations 5-9

Custom Modeling with Symbolically-Defined Devices
Controlling Currents

Not only can the equations for an SDD be written in terms of its own port voltages
and currents, an SDD can also be set up to reference the current flowing in another
device. The devices that can be referenced are limited to either voltage sources or
current probes in the same network. For instructions on how to define a controlling
current, refer to the section “Defining a Controlling Current” on page 5-15 An
example appears in “Controlling Current, Instantaneous Power” on page 5-34.

Specifying More than One Equation for a Port

It is possible to specify more than one expression for a port, but they must be either
all implicit or all explicit expressions. And, each port must have at least one equation.
When more than one expression is given for a port, the SDD calculates a separate
spectrum for each expression. Each spectrum is weighted by the weighting function
specified for that expression. The SDD then sums up the individual spectra to get the
final spectrum. Explicit and implicit examples follow.

Explicit Cases

The two SDD equations

I[1,0] = f1(_v1)

I[1,0] = f2(_v1)

and

I[1,0] = f1(_v1) + f2(_v1)

are equivalent and implement

The SDD equations

I[1,0] = f1(_v1)

I[1,1] = f2(_v1)

implement

i1 f 1 v1() f 2 v1()+=

i1 f1 v1() d
dt------ f2 v1()+=
5-10 Writing SDD Equations

Implicit Cases

The two SDD equations

F[1,0] = f1(_v1, _i1)

F[1,0] = f2(_v1, _i1)

and

F[1,0] = f1(_v1, i1) + f2(_v1, _i1)

are equivalent and implement

In the case of an implicit representation, if there is only one expression for a port or,
equivalently, more than one expression for a port but all the expressions use the same
weighting function, do not use a weighting function other than 0. To see this, assume
that in the previous example the weighting function is not weighting function
number 0 but is the user-defined function H(ω). Then in the frequency domain, the
implicit equation becomes

which is equivalent to

Here, upper-case letters are used to indicate frequency-domain values, and this
assumes that the weighting function does not evaluate to zero at a frequency of
interest.

You would want to use a weighting function other than 0 with an implicit
representation when two or more expressions are used for a port and different
weighting functions are used by the expressions. For example, the SDD equations in
this example:

F[1,0] = f1(_v1,_i1)

F[1,1] = f2(_v1, _i1)

implement

f 1 v1 i1(,) f 2 v1 i1(,)+ 0.=

H ω()F1 V1 ω() I1 ω(),() H ω()f V1 ω() I1 ω(),()+ 0=

F1 V1 ω() I1 ω(),() F2 V1 ω() I1 ω(),()+ 0=

f 1 v1 i1(,) d
dt------ f 2 v1 i1(,)+ 0=
Writing SDD Equations 5-11

Custom Modeling with Symbolically-Defined Devices
Using an SDD to Generate Noise

An SDD can generate noise only for AC and S-parameter simulations. If you want to
add 1/f noise to a current source, consider using a standard current noise source and
set its value with an equation so it is a function of frequency:

In = 1e-12 + 1e-6/(freq+1)

In the denominator, the 1 is added so that the equation is not divided by zero when
freq=0.

Summary

• The SDD is an n-port device.

• For port n, the voltage is denoted _vn . The current is denoted _in . Positive
current flows into the terminal marked +.

• The explicit representation is useful for voltage-controlled nonlinearities:

• The implicit representation is useful for the general nonlinearity:

• Weighting functions are used to give a frequency weighting to a spectrum.
Weighting function number 0 corresponds to no (that is, unity) weighting.
Weighting function number 1 corresponds to jω and is used to implement a time
derivative.

• SDD equations can reference the current flowing voltage sources or current
probes in the same network.

• When more than one expression is given for a port, each expression is
evaluated, converted into a spectrum, and weighted separately from the others.
The resulting spectra are added together to get the final spectrum.

• An SDD can generate noise only for AC and S-parameter simulations.

i f v()=

f i v(,) 0=
5-12 Writing SDD Equations

Adding an SDD to a Schematic
SDDs can be added to a schematic in the same way as other components are added
and connected to a circuit. This section describes the mechanics of adding an SDD
component to a schematic and defining it.

To add an SDD:

1. From the Component Palette List, choose Eqn-based Nonlinear .

2. Select the SDD with the desired number of ports, add it to the schematic, and
return to select mode.

3. Double-click the SDD symbol to edit the component.

4. The equations that define the SDD are entered as parameters in the Select
Parameters list. The left side of an equation identifies the type of equation, the
port it is applied to, and the weighting function

.

Select the equation you want to edit. (Note the buttons below the list to add, cut,
and paste equations as necessary.)

5. Under Parameter Entry Mode, specify the type of equation: implicit , or explicit .
For more information on the types of equations, refer to the section “Defining
Constitutive Relationships with Equations” on page 5-4.

I[1,0] = _v1/50

functionidentifier

implicit equation
port 1

weighting function 0
Adding an SDD to a Schematic 5-13

Custom Modeling with Symbolically-Defined Devices
6. In the Port field, enter the number of the port that you want the equation to
apply to.

7. In the Weight field, enter the weighting function that you want to use.
Predefined weighting functions are 0 (the equation is multiplied by 1) and 1
(the equation is multiplied by jw). For more information on weighting functions,
refer to the section “Weighting Functions” on page 5-8. For information on the
procedure for adding a different weighting function to an SDD, refer to the
section “Defining a Weighting Function” on page 5-16.

8. In the Formula field, enter the equation. For long equations, click More for a
larger entry area.

9. Click Apply to update the equation.

10. Add and edit other equations for other ports as desired.

11. Click OK to accept the changes and dismiss the dialog box.
5-14 Adding an SDD to a Schematic

Defining a Controlling Current

The equations for an SDD can be written in terms of the current flowing in another
device. For example, you can use the current flowing through a voltage source as part
of an SDD equation. You can specify only the current through devices that are either
voltage sources or current probes as control currents, and they must be in the same
network as the SDD. To specify a current as a control current, you enter the instance
name of the device in the C[] parameter of the SDD. For example, to use the current
flowing through a voltage source called SRC1, you would set the current parameter
C[1] to SRC1. The SDD equations use the variable _c1 to refer to this current.

To define a controlling current:

1. Double-click the SDD component to open the Edit Component dialog box.

2. Select C[1]= in the Select Parameters list.

3. Choose String and Reference as the parameter entry mode; File based should
not be used. In the C[Repeated] field, type the instance name of the device.

An example of a parameter definition is shown here.

4. To add another controlling current, select C[1] and click Add . The parameter
C[2] appears in the parameter list. You can define this parameter for another
current.

5. Click Apply to update the SDD definition.

6. To use the controlling current in an equation, type _cn in your SDD equation,
for example, _v2 + _v1*_c1 .

7. Click OK to accept the changes and dismiss the dialog box.

C[1] = Vdds

instance
name

control current
parameter
Adding an SDD to a Schematic 5-15

Custom Modeling with Symbolically-Defined Devices
Defining a Weighting Function

A weighting function is a frequency-dependent expression that is used to scale the
spectrum of a port current. Weighting functions are evaluated in the frequency
domain. Predefined weighting functions are 0 (the equation is multiplied by 1) and 1
(the equation is multiplied by jw). You can define your own weighting functions.

To define a weighting function:

1. Double-click the SDD component to open the Edit Component dialog box.

2. Select any equation in the Select Parameters list.

3. Click Add . The new equation is automatically selected.

4. From the Parameter Entry Mode list, choose Weighting . Note that an H appears
on the left side of the equation to denote it is a weighting function.

5. In the Weight field, enter a value greater than 1. Each weighting function must
have a unique value.

6. In the Formula field, enter the weighting function.

7. Click Apply to update the SDD definition.

8. Click OK to accept the changes and dismiss the dialog box.
5-16 Adding an SDD to a Schematic

SDD Examples
This section offers the following detailed examples that show how to use
symbolically-defined devices to define a wide range of nonlinear circuit components.
The examples include:

• “Nonlinear Resistor” on page 5-18

• “Ideal Amplifier Block” on page 5-20

• “Ideal Mixer” on page 5-23

• “Nonlinear Capacitors” on page 5-25

• “Full Model Diode, with Capacitance and Resistance” on page 5-28

• “Nonlinear Inductors” on page 5-32

• “Controlling Current, Instantaneous Power” on page 5-34

• “Gummel-Poon BJT” on page 5-36

You can find these examples in the software under the Examples directory in this
location:

Tutorials/SDD_Examples_prj/networks
SDD Examples 5-17

Custom Modeling with Symbolically-Defined Devices
Nonlinear Resistor

This section describes how to use SDDs nonlinear resistors with a cubic nonlinearity
example. This example is under the Examples directory in the following location:

Tutorials/SDD_Examples_prj/networks/Cubic.dsn

The nonlinear two-terminal resistor with constitutive relationship

exhibits a negative resistance for small v, and is widely used in the study of
oscillation theory. This two-terminal device can be modeled using a one-port SDD,
shown below. Since this is a voltage-controlled resistor, the SDD is defined using an
explicit equation.

With this setup, note the following points:

• This constitutive relationship specifies the current of port 1, and it is written as
a function of the voltage at port 1.

• The Weight field is set to 0 to indicate that the weighting function is identically
1.

Results of DC and harmonic balance simulations on this component are shown in
Figure 5-2.

i v() v3 3 v–⁄=
5-18 SDD Examples

Figure 5-2. Simulation Results For the Nonlinear Cubic Resistor

The data displays show:

• A DC plot of current versus voltage showing the cubic nature of the resistor.

• The spectrum of the resistor current when a 1MHz, 3 V sinusoidal waveform is
applied across the resistor. Note that the fundamental and the third harmonic
are the only non-zero terms.

• Current versus time with the same waveform applied at the input.
SDD Examples 5-19

Custom Modeling with Symbolically-Defined Devices
Ideal Amplifier Block

This example is under the Examples directory in the following location:

Tutorials/SDD_Examples_prj/networks/NonlinearAmp.dsn

A simple large-signal model for the gain of an ideal amplifier block can be expressed
as

where:

• vi is the input voltage

• vo is the output voltage

• Vs is the power supply voltage

• A is the gain in the linear region

This relationship has the characteristics that the gain is A for small vi, and that vo
saturates at ±Vs, as shown in Figure 5-4 (a).

The amplifier is a two-port device, so one more equation is required to specify the
constitutive relationship. In the case of Figure 5-3 (a), where the ideal amplifier has
infinite input resistance and zero output resistance, you could use the above equation
and the equation to define the constitutive relationship.

To model the amplifier as shown in Figure 5-3 (b), with finite input resistance Ri and
non-zero output resistance Ro, the equations will be different. The SDD in this
example is based on this model.

Figure 5-3. Equivalent Circuit Model for an Ideal Saturating Amplifier

vo Vs Avi Vs⁄()tanh=

ii 0=
5-20 SDD Examples

Current through the input resistance Ri can be expressed as:

You could use this equation directly as the equation for port 1, but then it would be
impossible to set Ri= . So, rewrite the explicit equation for port 1 using input
conductance Gi instead:

For port 2, the non-zero output resistance Ro is included in the model by adding a

term to the equation to account for the voltage drop across

the output resistance:

Note We can use the port 2 current in this equation because the equation for port 2
is an implicit equation. Recall that when the equation for port n is implicit, the
simulator appends the current through port n to the list of unknowns and, therefore,
the value of _in is available.

This model of an ideal amplifier as two-port SDD with the mixture of explicit and
implicit equations is shown below.

ii vi Ri⁄().=

∞

i1 Gi vi⋅=

f vi() Vs Avi Vs⁄()tanh=

vo Vs Avi Vs⁄()tanh ioRo+=
SDD Examples 5-21

Custom Modeling with Symbolically-Defined Devices
Note the following points:

• There are several parameters whose values are set by the user then passed to
the device: Gi (input conductance), A (gain), Vs (saturated output voltage), and
Ro (output resistance).

• _v1, _v2, and _i2 are assigned to variables (vi, vo, and io, respectively), and the
variables are used in the SDD equations.

• The final form of the implicit equation for port 2 is written so that it equates to
zero.

The SDD is simulated in the design TestAmp.dsn. DC and harmonic balance
simulation results are shown in Figure 5-4.

• The first plot is a DC plot of vo versus vi.

• The second plot is harmonic balance results showing output power and gain as
the amplifier saturates.

Figure 5-4. Simulation Results for the Ideal Saturating Amplifier
5-22 SDD Examples

Ideal Mixer

This example is under the Examples directory in the following location:

Tutorials/SDD_Examples_prj/networks/IdealMixer.dsn

The equivalent circuit for an ideal mixer is shown in Figure 5-5.

Figure 5-5. Equivalent Circuit for an Ideal Mixer

The ideal mixer is a three-port device, so three equations are required to define its
constitutive relationship. Based on the circuit above, the following three equations
can be used to represent the current at each port:

irf = vrf/Z

ilo = vlo/Z

iif = (vif − vrfvlo)/Z
SDD Examples 5-23

Custom Modeling with Symbolically-Defined Devices
These equations are voltage-controlled and can be implemented using explicit SDD
equations. The SDD is shown next.

In this setup _v1, _v2, and _v3 were used in the equations. Each port has a named
node, so the voltages will appear in the data display.

RF-LO-IF Example

An RF input of 1V at 3 GHz and an LO input of 1V at 4 GHZ yields an IF output of
0.25V at 1 GHz and 7 GHz, provided the IF output is matched (terminated in Z). The
one scaling down by a factor of two comes from the ideal mixing process, while the
other comes from the voltage being split over the two Zs.

Figure 5-6 shows the results of a harmonic balance simulation of the mixer. It shows
the amplitude modulation effects in the time waveform of vif. For this simulation, vrf
is a sinusoid at 100 MHz with a DC offset, and vlo is a sinusoid at 2 GHz.
5-24 SDD Examples

Figure 5-6. Simulation Results for the Ideal Mixer

Nonlinear Capacitors

So far, all of the examples have dealt with nonlinear resistors. This section describes
nonlinear capacitors.

A nonlinear, voltage-controlled capacitor is defined in terms of its charge-voltage, or
q-v, relationship

For example, the q-v relationship for a linear two-terminal capacitor is

which, when differentiated with respect to time, yields the more familiar capacitor
equation

To use the SDD to model a nonlinear voltage-controlled capacitor, note that given a
nonlinear charge Q(v), the current is

q Q v()=

q Cv=

i C v()dv
dt-------=

i d
dt------Q v()=
SDD Examples 5-25

Custom Modeling with Symbolically-Defined Devices
This is a voltage-controlled expression for the current. It differs from the constitutive
relationship of a voltage-controlled resistor because it contains a time derivative.

The time derivative is implemented in the SDD by specifying weighting function
number 1. Weighting function number 1 is predefined as jω which is the
frequency-domain version of the time derivative.

Obtaining Charge From Capacitance

Often the equation for a nonlinear capacitor is specified not in terms of charge, but in
terms of a nonlinear capacitance C(v) where

Given this representation, the charge function is obtained by integrating the
capacitance

where we have explicitly included the arbitrary constant of integration Q0.

If for some reason, the charge cannot be calculated, then the alternative technique
presented in “Alternative Implementation of a Capacitor” on page 5-47 can be used to
implement the capacitor.

i C v() d
dt------=

Q v() C v̂() v̂ Qo+d
v
∫=
5-26 SDD Examples

Multi-port Capacitors

A nonlinear voltage-controlled two-port capacitor is usually defined by a capacitance
matrix

The capacitor currents are given by

The charge for a two-port capacitance is defined as the function Q(v1,v2) such
that C(v1, v2) is the derivative (that is, Jacobian) of Q(v1,v2). It follows that
Q(v1,v2) exists if and only if

and

If Q(v1,v2) does not exist, then the technique presented in “Alternative
Implementation of a Capacitor” on page 5-47 can be used to implement the capacitor.

C v1 v2,()
C11 v1 v2,() C12 v1 v2,()

C21 v1 v2,() C22 v1 v2,()
=

i1

i2

C v1 v2,()
td

d v1

v2

=

∂C11
∂v2

∂C12
∂v1

-------------=

∂C21
∂v2

∂C22
∂v1

-------------=
SDD Examples 5-27

Custom Modeling with Symbolically-Defined Devices
Full Model Diode, with Capacitance and Resistance

This example is under the Examples directory in the following location:

Tutorials/SDD_Examples_prj/networks/SDD_Diode.dsn

Capacitance . The junction capacitance of a reverse-biased pn diode may be written
as

The subscript r signifies reverse bias.

To develop this expression into an equation that can be used in an SDD, you integrate
Cr(v) with respect to v to get an expression for the charge:

where the arbitrary constant of integration is chosen so that Qr(Vo) = 0.

There is a limitation to this equation because it is valid only for v < Vo. Though it is
useful in applications where the diode is always reverse biased (for example, a
varactor diode), it is not suitable for a general harmonic-balance analysis (or a DC
analysis, for that matter) where the bias voltage may exceed Vo.

A better diode model has the charge model extended into the forward-biased region,
plus resistance. Capacitance is described next, followed by resistance and the SDD
implementation. Besides yielding a valuable result, this example also highlights
some useful techniques for ensuring the continuity of charge and its derivative.

To increase the range of operation of the model, you can extend the capacitance into
the region v > Vo using a linear extrapolation. To do this, choose α such that 0 < α <1.

Let the previous Cr(v) equation be valid for v < αVo, and for v < αVo use

where:

• C'
r(v) is the derivative of Cr(v) with respect to v

• The subscript f signifies forward bias

• Cf is a linear extension of Cr that matches the value and slope of Cr at v = α Vo

Cr v() Co
Vo

Vo v–
--------------- v Vo<=

Qr v() 2– Co Vo Vo v–() v Vo<=

Cf v() Cr αVo() C'r αVo() v αVo–()+=
5-28 SDD Examples

This definition of Cf ensures that, when joined with Cr, the capacitance and its
derivative are continuous. The boundary between reverse and forward bias is chosen
to be αVo instead of Vo because the slope of Cr at Vo is infinite.

The next step is to integrate Cf (v) to obtain

where the constant of integration is chosen so that Qf(αVo) = Qr(αVo). This equation
can be rewritten as

The overall expression for the junction charge is given as

Note Q(v) and its derivatives are guaranteed continuous due to the definition of
Cf(v) and due to the choice of the constant of integration for Qf(v).

Resistance . The equation for the resistive behavior of a pn junction is the ideal
diode equation

Thus, total diode current has two components, one from the ideal diode equation and
one from the charge. This is handled in the SDD by specifying two equations for the
current of port one, one using weighting function number 0 and the other using
weighting function number 1.

Qf v() v αVo–() Cr αVo() C'r αVo() v αVo–() 2⁄+() Qr αVo() v αVo≥ .+=

Qf v()
Co

1 α–
---------------- v αVo–

v αVo–()2

4Vo 1 α–()
--------------------------+

Q+
r

αVo() v αVo≥ .=

Q v()
Qrv if v αVo<
Qf v if v αVo≥

=

i Is exp v VT⁄() 1–().=
SDD Examples 5-29

Custom Modeling with Symbolically-Defined Devices
Implementation . The SDD implementation is shown next.

Note the following points:

• The current in the diode is based on two SDD equations:

• The first equation models the resistive behavior of the diode. It uses
expressions listed in the Var Eqn component under Current equations. These
include the variables max_exp, max_arg, the function exp_soft(x), and the
variable Vt. They determine what value Is is multiplied by. exp_soft is the soft
exponential function and is used to prevent overflow problems when taking
the exponent of a large number. It is the same as a normal exponential except
it becomes a linear extrapolation when its argument is such that the normal
exponential would exceed max_exp.

• The second equation models the charge. It uses the expressions listed in the
Var Eqn component under Charge equations. The value of _v1 is passed to
the function Q(v), where it is evaluated and the result is returned to the SDD.
There are several parameters with user-defined values, which also enter into
the calculations: Is (), Co (), Vo (), and alpha () (these value are passed from
TestDiode.dsn).
5-30 SDD Examples

• A weighting function is used in the second SDD equation. It is important to
understand how the weighting function is used by the SDD and is reviewed
here.

• The spectrum for the port voltage _v1 is inverse Fourier transformed into the
time domain.

• The constitutive relation (in this case, -2*C0*sqrt(V0*(V0-vv)) is evaluated
point-by-point in the time domain.

• The resulting waveform (which is the charge for port one) is Fourier
transformed into the frequency domain.

• The weighting function (in this case, jw) is applied in the frequency domain.
The result is the spectrum of the port current _i1.

• When two explicit equations are specified for a single port, the SDD calculates a
spectrum representing the (weighted) result of the first equation, calculates a
spectrum representing the (weighted) result of the second equation, and then
sums the two spectra to get the final spectrum for the port current.

The SDD is simulated in the design TestDiode.dsn. This design uses the diode
capacitance as the C in an RC circuit. It also allows the independent adjustment of
the diode bias voltage. Figure 5-7 shows the frequency response of the RC circuit as
the bias voltage is varied fro -1 to 2 V.

Figure 5-7. Full Varactor Diode Model Results with C0 = 1 pF, V0 = 0.65V, and α = 0.7
SDD Examples 5-31

Custom Modeling with Symbolically-Defined Devices
Nonlinear Inductors

A nonlinear current-controlled inductor is defined in terms of its flux-current, or φ-i,
relationship

For example, the φ-i relationship for a linear two-terminal inductor is

which, when differentiated with respect to time, yields the more familiar inductor
equation

To model a current-controlled nonlinear inductor, differentiate

with respect to time to obtain

which can be rewritten as

This expression can be implemented using an implicit representation.

φ Φ i().=

φ Li=

v Ldi
dt------.=

φ Φ i()=

v d
dt------Φ i()=

v d
dt------– Φ i() 0.=
5-32 SDD Examples

For example, the SDD implementation for the nonlinear inductor specified by

is

Note This is a good example of a case when using weighting functions with the
implicit representation makes sense.

Obtaining Flux From Inductance

Often the equation for a nonlinear inductor is specified not in terms of flux, but in
terms of a nonlinear inductance L(i) where

Given this representation, the flux function is obtained by integrating the inductance

where we have explicitly included the arbitrary constant of integration φ0.

Φ i() L1i L3i3+=

v L i()di
dt------.=

Φ i() L î() î Φ0+d
i
∫=
SDD Examples 5-33

Custom Modeling with Symbolically-Defined Devices
Controlling Current, Instantaneous Power

This example is under the Examples directory in the following location:

Tutorials/SDD_Examples_prj/networks/RemCC.dsn

This example illustrates how to use a current as part of an SDD equation, where the
current is from another device in the circuit. For more background on controlling
currents and how to implement them, refer to “Controlling Currents” on page 5-10
and “Defining a Controlling Current” on page 5-15.

In this example, an SDD is used to calculate the instantaneous power dissipated
through resistor R1. The circuit containing R1 is shown here.

Making the power calculation requires both the voltage across R1 and the current
through R1. These values are supplied to the SDD in the following manner:

• The voltage across R1, labeled Vdd, is applied to port 1 of the SDD. Note that
the current at this port is set to zero.
5-34 SDD Examples

• The current through R1 is specified by using the current through the voltage
source Vdds, and reversing polarity. Recall that only the current through either
a voltage source or current probe can be used as a controlling current. The
instance name of the component is used to specify the controlling current, as
shown in the SDD illustration. In a more complex circuit, you might consider
adding a current probe.

• Although the equation to find power dissipated in R1 is simply Vdd* -_c1, it
must be written in a form that is suitable for the SDD. The first step is to
substitute _v1 for Vdd. Then note that if:

_v2 = -_v1*_c1

and by using an implicit equation, the equation

_v2 + _v1*_c1

can be used to define port 2 of the SDD. Then use a named node (Vpow) to save the
power to the dataset.The graphs of Vdd and the instantaneous power Vpow are
shown below.
SDD Examples 5-35

Custom Modeling with Symbolically-Defined Devices
Gummel-Poon BJT

This example is under the Examples directory in the following location:

Tutorials/SDD_Examples_prj/networks/GumPoon.dsn

Figure 5-8 shows the equivalent circuit model for the Gummel-Poon bipolar junction
transistor (BJT). The associated current and capacitance equations follow.

Figure 5-8. Equivalent Circuit Model for the Gummel-Poon BJT
5-36 SDD Examples

Current Equations

where

îc
Js
Qb
------- e

vbei

Nf Vt

e

vbci

NrVt

–

 Js

Br
------- e

vbci

NrVt

1–

– Jlc e

vbci

NcVt

1–

–=

îc
Js
Bf
------- e

vbei

Nf Vt

1–

 Js

Br
------- e

vbci

NrVt

1–

– Jle e

vbei

NeVt

1–

–= Jlc e

vbci

NcVt

1–

+

Rbb 3 rb rbm–() Z()tan Z–()⋅ ⋅ Z Z()tan
2⋅() rbm+⁄=

Qb

Q1
2

------- 1 1 4Q2++()=

Q1 1
Vbci
Vbf
------------–

Vbei
Vbr
------------–

 1–

=

Q
Js

Jbf
--------- e

Vbei

Nf Vt

1–

 Js

Br
------- e

vbci

NrVT

1–

+=
SDD Examples 5-37

Custom Modeling with Symbolically-Defined Devices
Capacitance Equations

where

Note : Junction capacitances of the form

change to the form

when v > FcVo. Here, 0 < Fc < 1.

Cb1 1 Xcjc–()Cjc 1
Vb Vci–

V jc
----------------------–

 M jc–

=

C
Tr Js
NrVt
---------------e

Vbci

VT

XcjcCjc 1
Vbci
V jc
------------–

 M jc–

+=

Cbe vbei∂
∂ Tff Js

Qb
---------------- e

Vbei

Nf Vt

1–

Cje 1
Vbei
V je
------------–

 M je–

+=

T ff TF 1 Xtf e

vbci

1.44Vtf

If

If Jtf+

 2

+

–=

If Js e

Vbei

Nf Vt

1–

=

C 1 v
Vo
-------–

 M–

C

1 Fc–()M
------------------------ 1 M

Vo 1 Fc–()---------------------------- v FcVo–()+

5-38 SDD Examples

Adding the Nonlinear Base Resistance

In the full Gummel-Poon model, the base resistance Rbb is a nonlinear resistance that
depends on ib. When the base resistance is nonlinear, it cannot be modeled by a
discrete resistor—it must be included in the SDD equations.

The constitutive relationships are:

Adding the Split Base-Collector Charge

Now that the nonlinear base resistance has been modeled, adding the split
base-collector capacitance is straight-forward. First, modify the equation for Qb2 to
account for Xcjc. Second, insert the equation for Qb1. Finally, add the time derivative
of Qb1 to ib and subtract it from ic:

ib vb vbi–() Rbb⁄=

0 vbi vb–() Rbb ib vbei vbci,()+⁄ d
dt------ Qbe Qb2+()+=

îc îc vbei vbci,() d
dt------ Qb2–=

ie îb vbei vbci,()– îc vbei vbci,()– d
dt------ Qbe.–=

ib vb vbi–() Rbb
d
dt------+⁄ Qb1=

0 vbi vb–() Rbb ib vbei vbci,() d
dt------+ +⁄ Qbe Qb2+()=

ic îc vbei vbci,() d
dt------– Qb1 Qb2+()=

ie îb vbei vbci,() îc vbei vbci,()– d
dt------ Qbe.–=
SDD Examples 5-39

Custom Modeling with Symbolically-Defined Devices
SDD Implementation

This implemented SDD is under the Examples directory in the following location:

Tutorials/SDD_Examples_prj/networks/GumPoon.dsn

For optimal viewing, you should open the design. The components and equations are
shown below.

transistor variables:

supporting equations follow
5-40 SDD Examples

SDD Examples 5-41

Custom Modeling with Symbolically-Defined Devices
Note the following points.

• Each port has two equations, one for the current and one for the charge.

• The capacitance equations were integrated to obtain charge equations:

• The integration is simplified for the first term of Cbe since the first term is a
partial derivative, the integration and partial derivative effectively cancel.

• The integration is simplified for the first term in Cbc since the first term is an
exponential, and integration of an exponential is another exponential.

• The other charges are similar in form to the charge given earlier in the
section, “Full Model Diode, with Capacitance and Resistance” on page 5-28.

• The diode() and charge() functions are used to make the equations more
readable and to eliminate the duplication of common expressions.

• Except for one difference, the SDD BJT presented here is identical to the
compiled BJT model built-in to the simulator (in the simulator, the values of Vje
and Vjc are adjusted to reflect the bandgap characteristics of silicon).

• The SDD BJT uses about 55 equations. The built-in BJT model requires over
4500 lines of C code.

• The SDD BJT was written in about one day, and debugged in about one day. The
built-in BJT model required about two weeks to write and another two weeks to
debug.
5-42 SDD Examples

Examples Summary

• A voltage-controlled nonlinear resistor is described by its i-v relation

• A two-terminal voltage-controlled nonlinear resistor i = I(v) is implemented by

I[1,0] = _v1

• A general nonlinear resistor is described by an implicit i-v relation

• A general two-terminal nonlinear resistor f(i,v) = 0 is implemented by

I[1,0] = f(_i1, _v1)

• A voltage-controlled nonlinear capacitor is described by its q-v relation

• A two-terminal voltage-controlled nonlinear capacitor q = Q(v) is implemented
by

I[1,1] = Q(_v1)

• A two-terminal voltage-controlled device with resistance i = I(v) and charge q =
Q(v) is implemented by

I{[1,0] = I(_v1)

I[1,1] = Q(_v1)

• If a capacitor is specified by a nonlinear capacitance C(v) where

then the corresponding charge is given by

where Qo is the arbitrary constant of integration.

i I v()=

f i v,() 0.=

q Q v().=

i C v()dv
dt-------,=

Q v() C v̂() v̂ Qo+d
v∫=
SDD Examples 5-43

Custom Modeling with Symbolically-Defined Devices
• A current-controlled nonlinear inductor is described by its φ-i relation

• A two-terminal current-controlled nonlinear inductor φ = Φ(i) is implemented
by

I[1,0] = _v1

I[1,1] = -phi(_i1)

• If an inductor is specified by a nonlinear inductance L(i) where

then the corresponding flux is given by

where Φo is the arbitrary constant of integration.

• SDD models are easier to write and debug than compiled models, but they are
less efficient during a simulation.

φ Φ i().=

v L i()di
dt------,=

Φ i() L î() î Φo+d
i
∫=
5-44 SDD Examples

Modified Nodal Analysis
Advanced Design System uses nodal analysis to form the circuit equations. Nodal
analysis is based on Kirchoff ’s current law (KCL) which states that for each node, the
sum of the currents incident to the node is zero.

Suppose a circuit has n+1 nodes and b branches. Let i be the vector of branch
currents. Then KCL can be expressed by the equation

Ai = 0

where A is an n x b matrix called the node incidence matrix. The entries in A are
given by

In nodal analysis, KCL is not applied to the ground node (such an equation yields no
independent information) which explains why A has only n rows. If all the devices in
the circuit are voltage controlled, that is, if the port currents of each device are
completely determined by the port voltages of that device, then the branch current
vector i can be written as

i = g(v)

where v represents the vector of n node voltages and g is a map from IRn to IRb.
Substituting this equation into the KCL equation yields the node analysis equation

G(v) = 0

where G is a map from IRn to IRn defined by G(v)= Ag(v).

aij

1 if branch j enters node i

1 if branch j leaves node i–

0 otherwise

=

Modified Nodal Analysis 5-45

Custom Modeling with Symbolically-Defined Devices
When a circuit contains devices that are not voltage controlled (a voltage source or an
inductor, for example), it is impossible to write KCL in terms of the node voltages
alone—some additional variables must be used. In modified nodal analysis, the
branch currents of the non-voltage-controlled devices are retained as variables. Thus
KCL can be written as

where ib is the vector of the nb branch currents of the non-voltage-controlled devices

and G is a map from 1to IRn. Since there are now n equations in n+nb
unknowns, nb additional equations must be appended to the node equations. These
additional equations are the constitutive relationships of the nb
non-voltage-controlled branches

The resulting augmented nodal equations are the modified nodal analysis equations

Ĝ v ib,() 0=

IR
n n1+

f̂ v ib,() 0=

F v ib,()
Ĝ v ib,()

f̂ v ib,()

0= =
5-46 Modified Nodal Analysis

Alternative Implementation of a Capacitor
Suppose you have a nonlinear capacitance that cannot be integrated to get the
corresponding charge function. One example is a capacitance that is table-driven
from experimentally obtained data. Another case is a two-port capacitor

where there does not exist a charge Q(v1, v2) such that C(v1, v2) is the Jacobian of
Q(v1, v2). In these cases, the capacitor can still be implemented using an SDD.
Consider the one-port nonlinear capacitance C(v). By definition,

There is no way to implement this equation directly using an SDD because it involves
the product of a derivative. To bypass this problem, create an intermediate variable
dv_dt = dv/dt. Then the capacitor is described by the equations

i = C(v) dv_dt

There is one problem with implementing these equations directly. In the frequency
domain, the time derivative of v is

dv_dt = j2πfv.

C v1 v2,()
C11 v1 v2,() C12 v1 v2,()

C21 v1 v2,() C22 v1 v2,()
=

i C v()dv
dt-------=

dv_dt dv
dt-------.=
Alternative Implementation of a Capacitor 5-47

Custom Modeling with Symbolically-Defined Devices
Considering harmonic frequencies, f can be as high as 500 GHz. With such a large
value of f, a 1µV change in v produces a 3 MV change in dv_dt. This high sensitivity
can cause convergence difficulties for the system. To eliminate the problem, scale by a
nominal frequency value of 1 GHz.

fnom = 1GHz

i = C(v) fnom dv_dt

Note that even though i is proportional to fnom dv_dt, i is not overly sensitive to dv_dt
because fnom is multiplied by C(v) which is typically on the order of 1/fnom.

The scaled formulation of the capacitance is implemented by the SDD using the
following equations:

I[[1,0] = C(v)*f_nom*dv_dt

F[2,0] = −dv_dt

F[2,1] = v/f_nom

and these VAR equations:

v = _v1

dv_dt = _v2

f_nom = 1 GHz

C(v) = 1pf*exp(v)

This SDD can be found in Examples/Tutorials/SDD_Examples_prj as
SDD_cap.dsn. An alternate implementation, SDD_cap2.dsn, can also be found in
the project

dv_dt 1
f nom
--------------dv

dt
-------.=
5-48 Alternative Implementation of a Capacitor

.

Alternative Implementation of a Capacitor 5-49

Custom Modeling with Symbolically-Defined Devices
Error Messages
If an SDD has not been implemented correctly, it will generate errors. The errors will
be similar to the ones listed here.

Expression error: [error message].

An error has occurred while parsing or differentiating an expression.

h[0] and h[1] are predefined.

Weighting functions 0 and 1 have been redefined. This is not allowed.

Illegal state variable ‘_in’.

_in has been used, but there are not n ports.

Illegal state variable ‘_vn’.

_vn has been used, but there are not n ports.

Improper frequency dependence in sdd ‘f’ parameters.

One or more of the implicit relationships depends on freq or omega. Frequency
dependence is not allowed.

Improper frequency dependence in sdd ‘i’ parameters.

One or more of the explicit relationships depends on freq or omega. Frequency
dependence is not allowed.

Port equation cannot be both i and f type.

At least one of the ports has both an explicit and an implicit expression. If more
than one expression is used for a port, all expressions for the port must be of the
same type, that is, all explicit or all implicit.

Port n is missing a corresponding equation.

No constitutive relationship has been specified for port n.

SYM error: [error message].

An error has occurred while evaluating an SDD expression or its derivative. (SYM
is the name of the system symbolic expression handler.)
5-50 Error Messages

Chapter 6: Custom Modeling with
Frequency-Domain Defined Devices
As CAE plays a larger role in the design cycle of RF and microwave circuits and
subsystems, it is important for CAE design systems to satisfy the modeling needs of
the engineer at both the device level and the subsystem level. As communication
applications continue to increase, it is no longer possible to satisfy all modeling needs
with standard, preconfigured models. Thus, Advanced Design System allows users to
define their own nonlinear models, in either the time domain or the frequency
domain.

For working in the time domain, the symbolically defined device (refer to Chapter 5,
Custom Modeling with Symbolically-Defined Devices) enables users to specify
nonlinear models directly on the circuit schematic, using algebraic relationships for
the port voltages and currents. It works very well for creating many nonlinear device
models, but it can be cumbersome for describing the nonlinear, behavioral,
frequency-domain operation of the type of subsystems used in RF and microwave
communication systems.

To address this need, the frequency-domain defined device (FDD) was developed. The
FDD enables you to directly describe current and voltage spectral values in terms of
algebraic relationships of other voltage and current spectral values. This simplifies
development of non-linear, behavioral models that are defined in the frequency
domain. The FDD is ideal for modeling a variety of devices, such as modulators and
demodulators, phase lock loop components, and more.

The FDD includes capabilities that make it well suited for modeling digital
communication subsystems, which often behave in ways that cannot be adequately
modeled as time-invariant. Clocked systems, sampled systems, TDMA pulsed
systems, and digitally-controlled systems are common, even in the RF and microwave
area, and behavioral models must be able to include these effects. So, in addition to
its frequency-domain modeling attributes, the FDD also enables you to define trigger
events, to sample the voltages and currents at trigger events, and to generate outputs
that are arbitrary functions of either the time of the trigger or of the complex spectral
voltage and current values at these trigger events.

While the SDD is the user-defined model of choice for modeling at the device and
component level where physics dictates that responses are a function of the
instantaneous port variables, the FDD is preferable for nonlinear, behavioral
modeling in both the frequency and time domains.
6-1

Custom Modeling with Frequency-Domain Defined Devices
Before continuing this chapter, you should be familiar with the SDD. This chapter
assumes knowledge of several topics that are presented in the discussion of SDDs,
such as port variables and explicit and implicit equations. For more information,
refer to Chapter 5, Custom Modeling with Symbolically-Defined Devices.

Signal Models and Sources
To fully understand how FDD models work and what they can do, some
understanding of how the simulator models signals in the different simulation
analyses is necessary. While the descriptions that follow use voltages, either voltage
or current signals can be used.

In DC analyses, a node voltage is simply expressed as a constant V for all time. Its
frequency spectrum is simply an impulse at DC with a value of V.

In transient and convolution analyses, a node voltage is still a single variable, but it is
now a time-varying variable V(t), which can theoretically represent any type of signal
from DC up to the Nyquist bandwidth (.5/Tstep). These signals can be periodic,
transient, or random signals. The spectrum of this signal can be computed with
Fourier transform techniques.

In harmonic balance analyses, a node voltage is represented by a discrete spectrum
in the frequency domain. This limits the signal types to quasi-periodic signals, and,
given memory limitations, to a relatively few number of discrete frequencies. The
time-domain waveform can be computed by Fourier transform techniques, based on
the equation below.

The set of harmonic frequencies is defined by the user entering a set of fundamental
frequencies, with an order for each tone. A maximum order parameter is also
required for limiting the number of mixing tones that are included in the set of
harmonic frequencies. For each of these frequencies, each node voltage has a constant
value associated with it, signifying the amplitude and phase of the periodic sinusoid
at that frequency.

V t() Vke
j2π f kt

k 0=

N

∑

real=
6-2 Signal Models and Sources

These frequencies are referenced by fundamental frequency indices, in the following
manner:

• Given the indices [m,n], the corresponding frequency is m*freq1 + n*freq2,
where freq1 and freq2 are fundamental frequencies.

For example, consider a two-fundamental simulation, with fundamental frequencies
freq1 and freq2 defined as 1GHz and 900 MHz, respectively. The frequency
component at 1 GHz would have indices of [1,0]. The 900 MHz frequency component
would have indices of [0,1]. 100 MHz would have an index of [1,-1], and [2,-1] would
be one of the intermod terms at 1.1 GHz. Note that [0,0] refers to DC. Indices of [-1,1]
reference -100 MHz and its spectral values would be equal to the complex conjugate
of those at 100 MHz.

A three-fundamental frequency system requires three indices [m,n,o] to define a
unique frequency component.

In Circuit Envelope analyses, a node voltage is represented by a time-varying,
frequency-domain spectrum. As in harmonic balance, a set of harmonic frequencies is
user-defined. But here, the spectral amplitude and phase at each of these frequencies
can vary with time, so the signal it represents is no longer limited to a constant
sinusoid. Each of these harmonic frequencies is the center frequency of a spectrum;
the width of each spectrum is ±.5/Tstep. The bandlimited signal within each of these
spectra can contain multiple periodic, transient, or random tones. The actual
time-domain waveform is now represented by the following equation.

Since each time-varying spectrum Vk(t) can be thought of as a modulation waveform
of the center frequency fk, these are often referred to as envelopes. This does not
imply that there must actually be a frequency component at the center frequency, see
Table 6-1 for examples. Note there are N+1 of these spectra. The one at DC (also
referred to as the baseband component) is limited to a bandwidth of 0.5/Tstep and
must always be real. The other N spectra have a double-sided bandwidth of 1/Tstep
and are usually complex.

V t() Vk t()e
j2π f kt

k 0=

N

∑

real=
Signal Models and Sources 6-3

Custom Modeling with Frequency-Domain Defined Devices
The envelope waveform Vk(t) has many useful properties. For example, to find the
instantaneous amplitude of the spectrum around fk at time ts, you simply compute
the magnitude of complex number Vk(ts). Similarly, the phase, real, and imaginary
values of instantaneous modulation can be extracted by simply computing the phase,
real, and imaginary values of Vk(ts). Note this is only extracting the magnitude of
the modulation around fk. It is not including any of the spectral components of
adjacent fk-1 or fk+1 spectra, even if these spectra actually overlap. If this fk spectrum
has multiple tones inside of it, then this demodulation does include their effects.

Table 6-1. Example Signals for Spectrum around fk

Formula Description

1 Vk=1 Constant cosine cos(2*pi*fk*time)

2 Vk=exp(-j*pi/2) or polar(1,-90) or -j Constant sine sin(2*pi*fk*time)

3 Vk=A*exp(j*(2*pi*fm*time+B)) One tone (SSB)
A*cos(2*pi*(fk+fm)*time+B)

4 Vk=A*exp(j*B); freq=1.1 GHz1 Same as (3)
(assuming fk + fm = 1.1 GHz)

5 Vk=2*cos(2*pi*fm*time) Two tone (AM suppressed carrier)

6 Vk=exp(j*2*pi*fm*time) + exp(-j*2*pi*fm*time) Same as (5)

7 Vk=pulse(time,...); freq=fk+fm1 Pulsed RF at a frequency of fk + fm

8 Vk= -step(time - delay) A negative cosine wave, gated on at
t=delay

9 Vk = (vreal(time)+j*vimag(time))*
exp(j*2*pi*fm*time)

I/Q modulated source centered at
fk+fm. (vreal(), vimag() user-defined
functions)

10 Vk=(1 + vr1) * exp(j*2*pi*vr2) Amplitude and noise modulated
source at fk. (vr1. vr2 user-defined
randtime functions)

11 Vk=exp(j*2*pi*(-f0 + a0*time/2)*time) Chirped FM signal starting at fk-f0,
rate a0

1. freq is defined in the paragraph below.
6-4 Signal Models and Sources

This simple technique does not allow demodulating only one of the tones inside this fk
spectrum and excluding the other tones in the fk spectrum. To accomplish this, the
desired tone must first be selected by using an appropriate filter in the circuit
simulation. Also note that since the baseband (DC) spectrum represents a real
signal and not a complex envelope, its magnitude corresponds to taking the absolute
value, and its phase is 0 or 180 degrees.

Defining Sources

To define a source for Circuit Envelope, you first identify in which spectral envelope
the signal belongs. This will typically be the fundamental of one of the frequencies
specified in the analysis. Most frequency-domain sources have a single frequency
parameter that can be specified. When these sources are used in a harmonic balance
or Circuit Envelope simulation, the simulator will determine which of the analysis
frequencies is the closest to the source frequency, and if it is close enough, will
internally assign it the corresponding set of indices. A Circuit Envelope simulation
will also determine the frequency offset from the analysis frequency and
automatically shift the signal accordingly. This frequency offset can be up to
±0.5/Timestep. If the source frequency is too far away from any analysis frequency,
then its output is set to 0.0 for that analysis and a warning is generated.

Regarding the equations used to define an output from these sources, instead of
having to define a fundamental frequency and an SSB frequency offset modulation as
in source example 3 in Table 6-1, the simpler format of example 4 is now possible. In
addition, these frequency-defined sources are also directly compatible with simple
transient analysis.
Signal Models and Sources 6-5

Custom Modeling with Frequency-Domain Defined Devices
The Frequency-Domain Defined Device
This section describes the equations and parameters of the FDD. A procedure for
adding an FDD to a schematic is in the section “Adding an FDD to a Schematic” on
page 6-23. For examples of FDDs developed into models, refer to the section“FDD
Examples” on page 6-28.

The frequency-domain defined device is represented on the circuit schematic as an
n-port, along with equations specifying the relationships between the spectral port
variables. An example of a 2-port FDD is shown here.

By usual convention, a positive port current flows into the terminal marked +.

Retrieving Values from Port Variables

The variables of interest at a given port are the port spectral voltages and port
spectral currents. Spectral voltages and currents can be obtained using the functions
_sv(), _si(), _sv_d(), and _si_d(), which are described in Table 6-2, and used in
conjunction with equations, which are described in the section “Defining Constitutive
Relationships with Equations” on page 6-8.The _sv() and _si() functions return
voltage or current values for a specific port and for a specific frequency. You choose
the port by port number, and you choose the frequency using a frequency index. The
index is either:

• The index to an FDD carrier frequency and its harmonics

• A set of indices that reference the frequencies of a harmonic balance analysis

For information on FDD carrier frequencies and indexing, refer to the section
“Specifying Carriers with the Freq Parameter” on page 6-10. For a description of
frequency indices from a harmonic balance analysis, refer to the section “Signal
Models and Sources” on page 6-2.

port 1 port 2

equation
6-6 The Frequency-Domain Defined Device

As an example, to access the spectral voltage at port 1 for the second harmonic of the
first fundamental frequency, use the function _sv(1,2). Similarly, to access the port n
current at the frequency with indices [h1,h2,h3], use the function _si(n, h1, h2, h3).
Both of these functions return single complex values at each time point, unless the
specified envelope is baseband, in which case the value is real. The underscore in the
function names is used so as to not conflict with user-defined functions, and to signify
that these functions only have meaning within the context of evaluating the FDD
device. They cannot be used to directly generate output variables, for example.

The _sv() and _si() functions return the present value of the specified spectral
envelope. For transient, convolution, or Circuit Envelope simulations, it is also
desirable to access past values of the spectral port variables. This can be done using
the _sv_d() and _si_d() functions, which are described in Table 6-2. These functions
have a delay parameter. For example, to find the value of the port 2 voltage at the
[2,-1] intermod frequency 10 µsec ago, use _sv_d(2, 10us, 2,- 1).

The delay values in the _sv_d() and _si_d() functions can be variables that change
during the simulation. However, these delay variables must have their maximum
value at time t=0. This is to allow proper initialization of the required history buffers.
This criteria can usually be met with an expression such as

fdd_delay = if (time = 0) then max_delay else variable_delay endif.

where max_delay is some reasonable value that the variable_delay is known to never
exceed.

Table 6-2. Functions for Accessing Spectral Ports and Currents

Name Description

_sv(port, findex) †

†findex can refer either to the index of an FDD carrier frequency as defined with the
freq parameter and its harmonics or a set of indices that reference the fundamental
frequencies of a harmonic balance analysis.

Returns the spectral voltage for the specified port at
the specified frequency index.

_si(port, findex) Returns the spectral current for the specified port at
the specified frequency index.

_sv_d(port, delay, findex) Returns a past value of spectral voltage for the
specified port and time delay at the specified
frequency index.

_si_d(port, delay, findex) Returns a past value of spectral current for the
specified port and time delay at the specified
frequency index.
The Frequency-Domain Defined Device 6-7

Custom Modeling with Frequency-Domain Defined Devices
Also, FDDs require that all state variable dependencies that will ever exist must
exist at time = 0. For example, the following equation describes a discrete
accumulation operation, with a reset to 0 at time = 0:

v[2,0] = if (time = 0) then 0.0 else _sv_d(2,timestep) + _sv(1,0) endif

However, it must be modified to work with the FDD so that both state variable
dependencies as well as the maximum delay at time = 0. The following satisfies this
criteria by adding an insignificant portion to the time = 0 value.

next_state = _sv_d(2,timestep) + _sv(1,0)

v[2,0] = if (time = 0) then 0.0 + next_state*1.0e-100 else next_state endif

Defining Constitutive Relationships with Equations

An unlimited number of equations can be used to define constitutive relationships
between the port voltages and port currents. There are two basic types of equations
allowed, current equations and voltage equations. Their basic format is:

i[port, findex] = f(_sv(),_sv_d(),_si(),_si_d())

v[port, findex] = f(_sv(),_sv_d(),_si(),_si_d())

The equations can be listed in any order, and more than one equation can be used for
a single port, but each port must have at least one equation.

Note the use of indices on the left side of the equations. This is similar to the use of
indices in the _sv() and other functions that were previously described, they can be
can be either the index to an FDD carrier frequency and its harmonics or a set of
indices that reference the frequencies of a harmonic balance analysis. Indices are
discussed in the sections “Signal Models and Sources” on page 6-2 and “Specifying
Carriers with the Freq Parameter” on page 6-10.

In order for a port current to be used on the right side of an equation, at least one
voltage equation for that port must be defined. It does not matter which harmonic
indices are used for this. Normally, the simulator does not generate current-state
variables, only node voltage-state variables. This is sufficient as long as the devices
are modeled as voltage-controlled current sources. This is also the most efficient
method in terms of speed and memory. However, current-controlled sources can be
generated but the simulator requires an additional equation to define this current.
The presence of a voltage equation signifies this to the simulator. In general, the
voltage equations should only be used when the voltage-controlled current equations
are insufficient. Refer to “Modified Nodal Analysis” on page 5-45, for more detail.
6-8 The Frequency-Domain Defined Device

While the SDD has truly implicit equations of the form f(_v1,...,_vn,_i1,...,_in)=0
the FDD does not. However, the equivalent effect can be generated by adding the left
side to the right side of the voltage equations. For example,

v[2,1,0]=f(_sv(1,0),_si(2,1,0))+_sv(2,1,0)

has effectively generated the implicit equation f(...) = 0. The FDD is different in this
respect in order to solve the problem of how to define the voltage at all unspecified
spectral frequencies. The above voltage equation also generated a number of
additional implied equations that say

v[2,all other harmonic indices] = 0.0.

Note that all equations for the same spectral port variable are effectively added
together, so if you also define an equation for another spectral frequency at the same
port (i.e., v[2,0] = vcalc), this additional implied equation that sets the voltage to zero
is ignored.

For a procedure on how to add current and voltage equations to an FDD, refer to the
section “Defining Current and Voltage Equations” on page 6-24.

Continuity

As with any Newton-Raphson based circuit-solving algorithm, the constitutive
relationships should be differentiable with respect to each of the specified spectral
voltages and currents, and these derivatives should be continuous. Discontinuous
derivatives may cause the simulator to have trouble converging.

One possible technique to improve convergence, or to circumvent the above
limitations, is to add delay between the input and output using the _sv_d() or _si_d()
functions. If this delay is greater than the simulation timestep, then the derivative
information is no longer needed or used. If this delay is acceptable behavior for the
model, simulation speed can be improved.

Large step discontinuities in the time-domain functions can also create convergence
problems, either taking longer to solve or possibly causing convergence failure.
Although having continuous derivatives with respect to time is not as important as
having continuous derivatives with respect to the spectral port variables, care should
be taken when using abrupt time functions.
The Frequency-Domain Defined Device 6-9

Custom Modeling with Frequency-Domain Defined Devices
Specifying Carriers with the Freq Parameter

The FDD has a repeatable freq[n] parameter, which can be used to define one or more
carrier frequencies. The [n] is used to identify each carrier, for example, freq[1]=100
MHz, freq[2]= 350 MHz. If carrier frequencies are defined for the FDD, you can
reference them using _sv() and related functions in order to collect voltages and
currents at carrier frequencies and their harmonics. The syntax to reference them is
to set the first index parameter equal to the negative of the carrier frequency number
[n]. The optional second index parameter specifies the harmonic of that carrier
frequency. For example, if an FDD has defined freq[3]=800 MHz, then _sv(1,-3,3)
specifies the port 1 spectral voltage at the envelope closest to 2.4GHz. If there is no
analysis frequency close enough to 2.4 GHz (within 0.5/Timestep for Circuit
Envelope), then this function simply returns 0.0 and generates a warning. Note that
_sv(1,3,3) would be unaffected by the carrier frequency parameters but still refer to
the envelope at 3*_freq1 + 3*_freq2, where _freq1 to _freq12 are predefined variables
that are set to the fundamental frequencies defined by the analysis.

The FDD freq parameter behaves differently than the source freq parameter (referred
to in the section “Defining Sources” on page 6-5) in that any acceptable offset
frequency between the carrier frequency and envelope center frequency is ignored.
For example, given an envelope analysis with a fundamental frequency of 0.5 GHz, a
timestep of 1µsec, and FDD freq[1] = 500MHz and freq[2]=500.1MHz, then _sv(1,-1)
and _sv(1,-2) would return the same value, the port 1 spectral voltage at 500 MHz. (If
timestep is changed to 1msec, then _sv(1,-2) would return 0.0.)

Note that it is not possible to reference a mixing product of multiple carrier
frequencies. If this is desired, then an additional carrier frequency equal to the
desired mixing product frequency must be defined. For an example, refer to the mixer
example in the section “Mixer” on page 6-31.

For a procedure on how to add freq parameters to an FDD, refer to the section
“Defining Frequency Parameters” on page 6-25.
6-10 The Frequency-Domain Defined Device

Creating Output Harmonics

If you are creating a model with the capability to output a large number of
harmonics, the _harm variable can be used with the FDD to develop a such a model.
The _harm variable, unlike most of the functions described in this chapter, is not
restricted to use in FDDs only.

Using the _harm variable, voltage and current source harmonic values can be
parametrically defined. Anytime the large signal voltage or current is defined with an
expression using _harm, the device will automatically index the value of _harm from
0 to the maximum value needed for the present analysis. The expression is then
re-evaluated for each value of _harm to determine the spectral content at a frequency
equal to _harm*frequency determined by the parameter indices.

The variable _harm is used in the function below, which implements a pulse source:

parameters VPEAK=1 V DUTYCYCLE=30 FREQ=1 GHz HARMONICS=16

ivs:CMP79 1 2 freq=Freq v[1]=A(_harm)

 Blackman(n,M) = (0.42 + 0.50*cos(PI*n/M) + 0.08*cos(2*PI*n/M))*step(M-n)

 A(k)=2*VPEAK*DUTYCYCLE/100*sinc(k*pi*DUTYCYCLE/100)*(-1)^k \

 * Blackman(k,Harmonics+1)*step(_harm)

The variable _harm has no set maximum harmonic limitation. The value of _harm
will automatically be incremented out to the maximum value available for the
present analysis.

This automatic indexing also works in baseband envelope and transient. The variable
is incremented until it either reaches 1000 or until its amplitude has become
insignificant for several consecutive harmonics.

In non-baseband envelope, the maximum harmonic will also be limited if the source's
harmonic falls outside the envelope bandwidth. For example, if the analysis
fundamental is 1MHz with a timestep of 1msec (+/-500Hz envelope bandwidth) and
the source fundamental frequency is 1MHZ + 100Hz, then the 6th harmonic falls
outside the envelope bandwidth and the spectrum is truncated, even if the analysis
order is 31. Also, anytime a spectrum is truncated in harmonic balance, it remains
truncated even if higher order spectral tones may exist, for example, if another
fundamental existed at 10MHz+1kHz, the spectral source would not add energy
there even though it is at the 10th harmonic of the source.
The Frequency-Domain Defined Device 6-11

Custom Modeling with Frequency-Domain Defined Devices
Note that the frequency value is determined by the frequency defined in the
parameter indices. In the above case, for example, v[1,2] = A(_harm) would have
defined a pulse waveform whose fundamental frequency is the second harmonic of
Freq. The equation v[0,1,2] = A(_harm) will define a waveform whose fundamental
frequency is (1 *_freq1 + 2*_freq2) where the _freqN variables are the fundamental
frequencies defined by the analysis. At the netlist level, multiple different spectrum
can be defined in one source, but each one will add the DC (_harm=0) value.

Limitations

In general, you should avoid using a fundamental frequency of 0 Hz. The _harm
parameter is not supported for the small signal spectral parameters.

There is no simulator variable available to determine what the maximum number of
harmonics is for a particular case. This can make windowing a little difficult, since a
parameter must be used or passed to the model to set the window bandwidth.

Defining an FDD Spectrum

The parametric definition of output spectrum using the _harm index also works with
the FDD. This example defines a VCO:

parameters Kv=1khz FUND=1 Rout=50 ohm PFUND=0 dBm Harmonic=

fdd:CMP2 _NET00005 0 out 0 i[1,0]=0
i[2,f1,f2,f3]=a*Harmonic*exp(j*_harm*b)*step

(_harm)

 a = -dbmtoa(PFUND, a_Rout)

 a_Rout = max(Rout,0.1)

 b = 1000*_sv_d(1,timestep,0)-pi/2

 f1 = if (FUND = 1) then 1 else 0 endif

 f2 = if (FUND = 2) then 1 else 0 endif

 f3 = if (FUND = 3) then 1 else 0 endif

C:CMP3 0 _NET00005 C=1/(2*pi*Kv)

vco_harm:CMP1 vin vout Kv=1khz FUND=1 Rout=50 ohm PFUND=0 dBm
Harmonic=fharm

fharm = sinc(_harm*pi*.25)/sinc(pi*.25)
6-12 The Frequency-Domain Defined Device

In this example, the user has entered the equation for the spectrum of a 25% duty
cycle square wave using the _harm index, which can generate as many harmonics as
can be supported by the present analysis. The fundamental power is still separately
defined so this spectrum is relative to that and the value for _harm=1 should be 1.0.

This method of harmonic indexing in the FDD is meant primarily for defining
multiple spectral outputs dependent on the same spectral input. But the _harm index
can also be used to change which spectral input is used for each spectral output. An
example is i[2,1]=_sv(2,_harm)/50, which adds a 50 ohm load at all the harmonics of
fund1, including DC. Note that this example is to illustrate the capability, it is
inefficient compared to using a resistor. Another example is i[2,1] =
_sv(1,0,_harm)/mag(_sv(1,0,1)+tinyreal)/Rout, which outputs an entire fund1
spectrum at port 2, based on the port 1 fund2 spectrum, and limits each spectral
component by the fund2 fundamental magnitude.

Note there is no capability in the FDD to allow automatic outputting of all spectral
tones. The _harm index is essentially limited to harmonics of the frequency specified
by the parameter indices. Additional parameters and equations have to be used to
cover additional fundamentals and intermods. An example of this is in the section
“Mixer” on page 6-31.
The Frequency-Domain Defined Device 6-13

Custom Modeling with Frequency-Domain Defined Devices
Using Arrays

Sometimes you may want a flexible number of spectral tones, but no simple equation
is available for this. Arrays can be used in this case, and unlike the harmlist
parameter, a separate parameter with separate supporting code is not required. Care
must be taken to avoid having the indexes exceed the array bounds, or an error will
occur. For this reason, a length() function is available to return the length of an array.
The following VCO example shows a possible usage. Also, note that the Harmonics
input parameter is a list of complex numbers representing the relative level of all the
desired harmonics, for example, list(.1, .02_j*.01).

parameters Kv=1khz Freq=1GHz P=-j*dbmtow(0) Rout=50 Ohm Delay=timestep
Harmonics=

; Y_Port is used as voltage to current converter

Y_Port:CMP1 in 0 _NET00005 0 Y[2,1]=-.001

; This capacitor performs the integration function

C:CMP3 0 _NET00005 C=1/(2*pi*Kv)

; This switch resets the integrating capacitor voltage to 0 at time = 0

ResetSwitch:CMP4 0 _NET00005

; This FDD is a programmable harmonic current source with a phase modulation
input

FDD:CMP2 _NET00005 0 out 0 I[1,0]=0 I[2,-1]=a*exp(j*b)

 I[2,-1]=if (_harm > 1 and _harm <= Hmax+1) then
a*Harmonics[_harm-1]*exp(j*_ha

rm*b)

 else 0.0 endif Freq[1]=Freq

 Hmax = length(Harmonics)

 Pdbm=30.0 + 10.0*log(mag(P) + tinyreal)

 a = -dbmtoa(Pdbm, Rout)*exp(j*phaserad(P))

 b = 1000*_sv_d(1,Delay,0)

R:CMP5 out 0 R=Rout
6-14 The Frequency-Domain Defined Device

In this case, the model was hard-coded to expect an array. A more general solution
might use the above VCO example, but this would require the user to limit the array
bounds access, since accessing out of bounds will cause an error.

vcodata=makearray(0,1,2,.5,.25*j,.125,-.0625,-j*.03125,.015625)

xyz = if (_harm < length(vcodata) then vcodata[_harm] else 0.0 endif

vco_harm:CMP1 vin vout Kv=1khz FUND=1 Rout=50 ohm PFUND=0 dBm
Harmonic=xyz

While this could be used to simplify the harmlist implementation, harmlist may be
more efficient.
The Frequency-Domain Defined Device 6-15

Custom Modeling with Frequency-Domain Defined Devices
Trigger Events

The FDD enables you to define trigger events. Up to 31 triggers can be defined.
Anytime the value of the trigger expression is equal to a number other than zero, a
trigger event is declared for the corresponding trigger. Each trigger keeps a count of
the number times the trigger occurred and the time of its last trigger. The trigger
time is defined as the time value of the current simulation point plus the value of the
expression. Therefore the value of the expression should normally be the time of the
trigger relative to the current time value. The value of this trigger expression should
be limited to -timestep and -2*timestep. This is explained further in the section
“Accessing Port Variables at Trigger Events” on page 6-18.

Three built-in functions have been defined to provide access to trigger information,
they are described in Table 6-3. Again, the underscore is used as part of the name,
signifying that these functions only have meaning within the context of an FDD
instance, and are not valid elsewhere.

Another function is available to detect threshold crossings and to generate the proper
trigger expression values, which is shown in Table 6-4. Note that the threshold
crossings are based only on the DC (baseband) spectral voltage at the specified port.
The actual time crossing is computed based on linear interpolation between adjacent

Table 6-3. Functions available to access trigger information

Name Description

_to(N) Returns 1 if trigger N occurred at this time point, else 0

_tn(N) Returns the accumulated number of trigger N events

_tt(N) Returns the absolute time in seconds of last trigger N event
6-16 The Frequency-Domain Defined Device

time points, so the actual accuracy will depend on both the size of the time step and
the rate of change of the slope of the signal.

For a procedure on how to add trigger parameters to an FDD, refer to the section
“Defining Triggers” on page 6-26.

Output Clock Enables

Normally all of the FDD voltages and currents are re-evaluated at every time sample.
It is possible, though, to enable the output of a given port to change only when a
specified trigger, or a set of specified triggers, occurs. This is done using the clock
enable parameter, ce[n]=value. [n] specifies the port where the clock enable will be
applied. value is a binary value that is set using the bin() function, where the Nth bit
corresponds to whether this port should be enabled by the Nth trigger. For example, if
you want the output of port n to be updated whenever either trigger 1 or trigger 3
occur, you would enter a value of bin(101) or 5 for the clock enable parameter. Clock
enables can be used when it is necessary to update computed values only at certain
time points. Sample-and-holds are one obvious application, refer to the example in
the section “Sample and Hold” on page 6-34.

For a procedure on how to add clock enable parameters to an FDD, refer to the
section “Defining Clock Enables” on page 6-27.

Table 6-4. Function to generate a trigger event

Name Description

_xcross(P, Vthresh, direction) Returns 0 if no threshold crossing occurred,
otherwise returns its relative time, a value
between (-1 and -2)*timestep. A threshold
crossing occurs if the baseband voltage at port
P passes through the value Vthresh in the
specified direction. A positive direction number
implies a positive edge; a negate number a
negative edge; a direction number of 0 implies
either positive or negative edge. No hysteresis
exists.
The Frequency-Domain Defined Device 6-17

Custom Modeling with Frequency-Domain Defined Devices
Accessing Port Variables at Trigger Events

Now that it is possible to generate trigger events at threshold crossings, it is
desirable to be able to determine the spectral port voltages and currents at the point
in time that this trigger occurred. Linear magnitude and phase interpolation is used
to compute values at times between adjacent simulator time points, and again, the
accuracy depends on the rate of change of the input envelope waveform. The four
functions that are used to do this are described in Table 6-5.

The _sv_e() function is very similar to _sv_d(), which is described in Table 6-2. By
default, though, past history for the _sv_e() function is only saved for the last 2
timesteps. Therefore, the event they refer to must have just occurred, and cannot
delay back an arbitrary amount of time. If a triggered voltage value is desired at a
much later point in time, then it should be sampled and held using a combination of
the above functions and the clock enable previously discussed.

All of the spectral port variable functions discussed so far return only the complex
value of the single specified envelope. (If the indices are 0, then the real baseband
value is returned.) The broadband functions _sv_bb() and _si_bb() functions, though,
perform an inverse Fourier transform of all of the spectral voltages or currents at the
specified event time, and return the real value. Note that if this value is computed at
every time step, it will generate an aliased, undersampled waveform, since the time
step in Circuit Envelope is typically much less than the period of the various envelope
center frequencies.

Table 6-5. Functions to access port variables at trigger events

Name Description

_sv_e(P,N,indices) Return the port P spectral voltage envelope at the last
trigger N time

_si_e(P,N,indices) Return the port P spectral current envelope at the last
trigger N time

_sv_bb(P,N) Return the total, real voltage of port P at the last
trigger N time

_si_bb(P,N) Return the total, real current entering port P at the last
trigger N time
6-18 The Frequency-Domain Defined Device

Delaying the Carrier and the Envelope

With exception of the _sv_bb() and _si_bb() functions, all of the other spectral port
variable functions return the envelope information. This is true even with the
delayed and event versions. If it is necessary to delay both the envelope and the
carrier, then an additional term must be added to account for the carrier phase shift.
For example, if the fundamental signal is

Vk(t)*exp(j*2*pi*fc*t)

then

i[2,1]=_sv_d(1,1usec,1)

generates a current equal to

Vk(t-1µsec)*exp(j*2*pi*fc*t)

To generate a true coherent delay with the FDD, you would have to modify the
equation to

i[2,1]=_sv_d(1,1usec,1)*exp(-j*2*pi*fc*1usec)

or to something similar. Of course, if only a fixed delay is desired, there are linear
elements that are more suitable for this application than the FDD.
The Frequency-Domain Defined Device 6-19

Custom Modeling with Frequency-Domain Defined Devices
Miscellaneous FDD Functions

There are three remaining functions that are available in the FDD for time-domain
operations, and are described in Table 6-6. They were incorporated into the FDD
because they required that state history be maintained. The functions correspond to
a basic counter and to a linear feedback shift register. These functions are valid only
when used in an FDD.

Table 6-6. Miscellaneous FDD Functions

Name Description

_divn(T,N,N0), Returns the value of a counter, clocked every
time trigger T occurs, decrementing from N to
0. N0 is initial time = 0 value.

_lfsr(T, seed,taps) Returns the value of a linear feed back shift
register that is clocked every trigger T. seed is
the initial value of the register. taps are the
binary weights of the bits that are fed back
using modulo 2 math.

_shift_reg(T,M, N, In) Returns the value of a multi-mode shift register
that is clocked every trigger T, has N bits, and
with an input equal to In .
M = 0: LSB first, Serial In, Parallel Out
M = 1; MSB first, Serial In, Parallel Out
M = 2; LSB first, Parallel In, Serial Out
M = 3; MSB first, Parallel In, Serial Out
6-20 The Frequency-Domain Defined Device

Defining Input and Output Impedances

With the SDD, it is very straight-forward to include the input and output resistances
in the basic equations. For example, i[1]=_v1/50 simply defines a 50 ohm input
resistance. This is not as simple with the FDD, since each equation only defines the
relationship for a single output spectrum. Thus, i[1,1,0] = _sv(1,1,0)/50 defines a 50
ohm input resistance, but only for the fundamental spectral envelope. The input
resistance for the other spectral components is still infinite, which is the equivalent of
being undefined. This becomes more problematic at the output. It is possible to define
the output current and output resistance for a single spectral envelope, but to leave
the other spectral envelopes undefined. This may create an ill-defined circuit,
creating a singular matrix error due to an undefined voltage at certain spectral
frequencies. These problems are best circumvented by using actual resistors external
to the FDD. Of course, if the resistance for certain spectral envelopes is different from
this external value, that difference can be included in the defining spectral port
equations.

Compatibility with Different Simulation Modes

The FDD is not fully compatible with all the different circuit analysis modes of
Advanced Design System. Since DC, AC, transient, and convolution analyses only
define the baseband variables, any use of non-baseband spectral envelopes (harmonic
indices not equal to 0) are ignored in these analyses and the voltages and currents for
these spectral frequencies are set to 0. Similarly, DC, AC, and harmonic balance
analyses are steady-state analyses and time is always equal to 0, so any time-varying
functions are evaluated at time=0 and accessing delayed voltages is the same as
accessing the present voltage. The concept of generating time trigger events, of
course, is valid only in transient, convolution, and Circuit Envelope modes of
operation.
The Frequency-Domain Defined Device 6-21

Custom Modeling with Frequency-Domain Defined Devices
Components Based on the FDD

A variety of circuit components in Advanced Design System are based on the FDD.
Some of these components are:

• Tuned modulators and demodulators

• Phase lock loop components

• Counter, time, and waveform statistics probes

• Sampler

Many of these models operate on a few (often just one) of the input spectral
frequencies, and in turn output just one, or a few, different spectral frequencies. This
is consistent with the desired, or measured, primary frequency-domain behavior, and
simulations can be performed quite efficiently since all operations are done directly in
the frequency domain.

In cases where a model must include second and third-order interactions with other
spectral frequency components, and the underlying nonlinearity is an algebraic
function of the time-domain voltages and currents, the FDD may become too tedious
to generate all of the frequency-domain equations that define the multiple
interactions, and a broadband model (which can be developed using the SDD) may be
the preferred model.

The FDD spectral models, in general, will not function with AC and transient
analyses. These limitations are noted where the components are documented in the
Circuit Components manuals.
6-22 The Frequency-Domain Defined Device

Adding an FDD to a Schematic
FDDs can be added to a schematic in the same way as other components are added
and connected to a circuit. This section describes the mechanics of adding an FDD
component to a schematic and defining it.

To add an FDD:

1. From the Component Palette List, choose Eqn-based Nonlinear .

2. Select the FDD with the desired number of ports, add it to the schematic, and
return to select mode.

3. Double-click the FDD symbol to edit the component.

4. FDD parameters are entered in the Select Parameters list. The parameter is on
the left side of the equation. It identifies the type of parameter, the port it is
applied to, and, where appropriate, the harmonic index

.

Select the parameter you want to edit. (Note the buttons below the list to add, cut,
and paste parameters as necessary.)

5. Under Parameter Entry Mode, specify the type of parameter to be defined:
current , voltage , frequency , trigger , or clock enable . Instructions for defining each
type of parameter follow.

6. Once a parameter is defined, click Apply to update.

7. Add and edit other parameters as desired.

8. Click OK to accept the changes and dismiss the dialog box.

I[1,1] = Vout/R

functionidentifier

current equation
port 1

harmonic index
Adding an FDD to a Schematic 6-23

Custom Modeling with Frequency-Domain Defined Devices
Defining Current and Voltage Equations

Current and voltage equations are the two basic types of equations for defining
constitutive relationships between the port voltages and port currents. For more
information about these equations, refer to the section “Defining Constitutive
Relationships with Equations” on page 6-8.

To define current or voltage equations:

1. Double-click the FDD component to open the Edit Component dialog box.

2. By default, a current equation appears in the Select Parameters list. Select this
equation.

3. From the Parameter Entry Mode list, choose either Current or Voltage . For
current equations, an I appears on the left side of the equation; for voltage
equations, a V is displayed.

4. In the Port field, enter the number of the port that you want the equation to
apply to.

5. In the Harmonic indices field, enter the harmonic index that the equation
applies to, either an absolute index, or a locally-defined carrier frequency, in
which case the first index must be negative.

6. In the Formula field, enter the expression that defines the current or voltage.

7. Click Apply to update the equation.

8. To add another equation, click Add and repeat steps 3-7.

9. Click OK to accept the changes and dismiss the dialog box.
6-24 Adding an FDD to a Schematic

Defining Frequency Parameters

The freq parameter can be used to define one or more carriers for an FDD. For more
information about the freq parameter, refer to the section “Specifying Carriers with
the Freq Parameter” on page 6-10.

To define a frequency parameter:

1. Double-click the FDD component to open the Edit Component dialog box.

2. Select any parameter in the Select Parameters list.

3. Click Add . The new parameter is automatically selected.

4. From the Parameter Entry Mode list, choose Frequency . The left side of the
equation is changed to Freq[n] , where n is an index indicating that it is the nth
frequency parameter defined for the FDD.

5. In the Index field, enter the index that identifies the frequency.

Note This index is used only to specify which frequency parameter to use when
more than one envelope is specified for an FDD. It does not specify a frequency
offset.

6. In the Formula field, enter the expression that defines the frequency.

7. Click Apply to update the parameter.

8. Click OK to accept the changes and dismiss the dialog box.
Adding an FDD to a Schematic 6-25

Custom Modeling with Frequency-Domain Defined Devices
Defining Triggers

Up to 31 triggers can be defined for a single FDD. Any time the value of the trigger
expression is equal to a value other than zero, a trigger event is declared for that
trigger. Each trigger keeps a count of the number of times the trigger occurred and
the time of the last trigger. For more information about triggers, refer to the section
“Trigger Events” on page 6-16.

To define a trigger:

1. Double-click the FDD component to open the Edit Component dialog box.

2. Select any equation in the Select Parameters list.

3. Click Add . The new equation is automatically selected.

4. From the Parameter Entry Mode list, choose Trigger . The left side of the
equation is changed to Trig[n] , where n identifies the trigger.

5. In the Index field, enter the value that identifies the trigger, 1-31.

6. In the Formula field, enter the expression that defines the trigger event.

7. Click Apply to update the parameter.

8. Click OK to accept the changes and dismiss the dialog box.
6-26 Adding an FDD to a Schematic

Defining Clock Enables

Clock enables restrict FDD voltages and currents to change only when a specified
trigger, or a set of specified triggers, occurs. This is done by setting the clock enable of
the desired port to a binary value, where the Nth bit corresponds to whether this port
should be enabled by the Nth trigger. For more information, refer to the section
“Output Clock Enables” on page 6-17.

To define a clock enable:

1. Double-click the FDD component to open the Edit Component dialog box.

2. Select any equation in the Select Parameters list.

3. Click Add . The new equation is automatically selected.

4. From the Parameter Entry Mode list, choose Clock Enable . The left side of the
equation is changed to ce[n] .

5. In the Port field, enter the number of the port that you want the clock enable to
apply to.

6. In the Formula field, enter the binary expression using the bin() function,
where the Nth bit corresponds to whether this port should be enabled by the
Nth trigger. For example, if you want port n output to be updated whenever
either trigger 1 or trigger 3 occur, you would enter a value of bin(101) or 5 for
the clock enable parameter.

7. Click Apply to update the parameter.

8. Click OK to accept the changes and dismiss the dialog box.
Adding an FDD to a Schematic 6-27

Custom Modeling with Frequency-Domain Defined Devices
FDD Examples
This section offers the following examples that show how to use frequency-domain
defined devices to define a variety of nonlinear circuit components. The examples
include:

• “IQ Modulator” on page 6-29

• “Mixer” on page 6-31

• “Sample and Hold” on page 6-34

You can find these examples in the software under the Examples directory in this
location:

Tutorials/FDD_Examples_prj/networks
6-28 FDD Examples

IQ Modulator

This example is under the Examples directory in the following location:

Tutorials/FDD_Examples_prj/networks/IQ_modulator.dsn

This is a simple, IQ modulator. The input signal is at port 1. The I and Q data
(baseband, time-domain signals) are made available at ports 3 and 4, respectively.

Note the following points:

• I data is the baseband time-domain signal and is applied to port 3.

• Q data is the baseband time-domain data and is applied to port 4.

• The current equations for ports 1, 3, and 4 set the current at these ports to zero.
These ports are treated as open circuits at all frequencies.

• The voltage equation at port 2 equates the spectral voltage at port 2 at
frequency Freq[1] to the baseband spectral voltage at port 3 (the I signal) plus j
times the baseband spectral voltage at port 4 (the Q signal) multiplied by the
spectral voltage at port 1 at frequency Freq[1].

• Note the use of -1 in the left side of the voltage equation and in the function
_sv(1, -1). The minus sign is required when referring to the index of a carrier
defined using the Freq parameter, in this case, the index 1 that identifies
Freq[1].

• Freq[1] is a user defined parameter whose value is passed to the FDD.
FDD Examples 6-29

Custom Modeling with Frequency-Domain Defined Devices
The design IQmodTest.dsn shows this device under test. I and Q modulation are
applied to ports 3 and 4. A 1 V, 1 GHz signal is applied to the input. The modulated
output is shown here.
6-30 FDD Examples

Mixer

This example is under the Examples directory in the following location:

Tutorials/FDD_Examples_prj/networks/FDDmixer.dsn

This is a simple, ideal mixer. It models upconversion, downconversion, LO leakage,
RF leakage, and conversion gain compression with increasing LO amplitude
.

FDD Examples 6-31

Custom Modeling with Frequency-Domain Defined Devices
Note the following points:

• Like the IQ modulator example, ports 1 and 3 are open circuits for all
frequencies.

• The signal at port 2 has four spectral components, which are defined with four
current equations. The equations define:

• LO leakage at frequency FLO

• RF leakage at frequency FRF

• The upconverted signal FLO+FRF

• The downconverted signal, which is the magnitude of FLO - FRF

• Note the use of minus signs in the left side of the current equations. The minus
sign is required when referring to the index of a carrier defined using the Freq
parameter. In this case, -1, -2, -3, and -4 each refer to Freq[1], Freq[2], Freq[3],
and Freq[4], respectively.

• The use of minus signs in the right side of the current equations is necessary
because the equations define positive current flowing into each port of the FDD.
Thus, the minus sign changes the direction of positive current.

• The variables Rout, FLO, and FRF are user-defined parameters whose values
are passed to the FDD.

The designs FDDmixerTest.dsn and FDDmixerTestEnv.dsn show the mixer under test
in a harmonic balance simulation and Circuit Envelope simulation, respectively. One
result of the Circuit Envelope simulation is shown here.
6-32 FDD Examples

FDD Examples 6-33

Custom Modeling with Frequency-Domain Defined Devices
Sample and Hold

This example is under the Examples directory in the following location:

Tutorials/FDD_Examples_prj/networks/SampleHold.dsn

This is a simple sample and hold device. The FDD samples the input data, in this
case, a sine wave, once per rising edge of the clock, then holds the value so that the
current is constant at the output. 20 samples are take per period of the input signal.

This example also uses the trigger and clock enable features of the FDD.
6-34 FDD Examples

Note the following points:

• Ports 1 and 3 are open circuits for all frequencies.

• The current equation for port 2 is based on the function _sv_bb(port, trigger).
This function, when passed a port number and trigger index, returns the total,
real voltage at the port, at the last time the trigger occurred. So the current at
port 2 is equal to the total, real voltage at port one at the last time trigger 1
occurred, divided by 50 ohms.

• The trigger parameter is based on the function _xcross(port, threshold,
direction). Given the values that are passed to this function here (3, 0.5, and 1),
a trigger occurs if the baseband voltage at port 3 passes through 0.5 V, in the
positive direction. For more information on triggers, refer to the section
“Trigger Events” on page 6-16.

• The clock enable parameter, Ce, enables the output of a port to change only
when a specified trigger occurs. In this instance, it means that the output at
port 2 will change only when trigger 1 occurs. This produces the “hold” effect of
the sample and hold device. The trigger indices must be specified in binary
format. For more information, refer to the section, “Output Clock Enables” on
page 6-17.
FDD Examples 6-35

Custom Modeling with Frequency-Domain Defined Devices
6-36 FDD Examples

Chapter 7: User-Compiled Models
Dialog Box Reference

New User-Compiled Model dialog box

Allows you to provide a filename for your new user-compiled model. You must use a
name that does not already exist in the current project and is not the name of a
primitive used by the simulator. Type the desired name in the Model Name box, then
click OK.

One of the following two dialog boxes will appear:

• If the Analog/RF simulation type is active, the Circuit Type dialog box appears,
allowing you to select a Linear or Nonlinear model before specifying parameters
and other data in the three-tabbed User-Compiled Circuit Model box.

• If the Digital Signal Processing simulation type is active, the three-tabbed
User-Compiled Signal Processing Model box appears.

Related Topics

User-Compiled Circuit Model, Parameters Tab

User-Compiled Circuit Model dialog box (Model Code Tab)

User-Compiled Circuit Model dialog box (Model Code Tab)

Open File dialog box

User-Compiled Circuit Model dialog box (Options tab)

Open File dialog box
7-1

User-Compiled Models Dialog Box Reference
Circuit Type dialog box

Allows you to specify whether your new Analog/RF user-defined model will be linear
or nonlinear. Click on the appropriate choice, then choose OK.
7-2

Open User-Compiled Model dialog box

Enables you to open a previously saved user-compiled model.

Active Projects

Use the drop-down list to select the project where the user-compiled model that you
want to open is stored.

Models in Project

Click the name of the model that you want to open.

OK

Click this button to open the selected model and dismiss this dialog box.

Cancel

Click this button to cancel the selected model and dismiss the dialog box.

Related Topics

User-Compiled Circuit Model, Parameters Tab

User-Compiled Circuit Model dialog box (Model Code Tab)

User-Compiled Circuit Model dialog box (Model Code Tab)

Open File dialog box

User-Compiled Circuit Model dialog box (Options tab)

Open File dialog box
7-3

User-Compiled Models Dialog Box Reference
User-Compiled Circuit Model, Parameters Tab

Enables you to define parameters and other specifications for your Analog/RF
user-defined model.

Component Name

Displays the previously assigned name of the selected user-defined model.

Select Parameter

Lists all of the parameters defined for this model.

Add

Allows you to add a newly defined parameter to the Select Parameter list after
specifications are made in the fields listed under Edit Parameter.

Cut

Removes a selected parameter from the Select Parameter list.

Paste

Inserts the last parameter that was cut from the Select Parameter list.

Add Multiplicity Factor (_M)

Add a multiplicity factor to the model.

Copy Parameters From

Choose this button to bring up the Library List dialog box to choose a component.
When you select OK, the selected component’s parameters will be copied to the
parameter list and the associated design (.dsn) file will be copied and saved as
<component_name> .dsn in the networks directory of the current project. The Layout
ArtworkType and Name are also copied.

Parameter Name

Type in an appropriate parameter name.
7-4

Value Type

Allows you to select a real (default), integer, complex, or string value type.

Default Value (e.g., 1.23e-12)

Specify the value to be assigned to each parameter when the component is first
inserted.

Parameter Type

(Optional) From the drop-down list, select the type of scale factors to be assigned to
the entered value (for example, Ohms, KOhms, MOhms, etc. for resistance). Default
is Unitless.

Parameter Description

(Optional) Type in a brief description of the parameter. Default is blank.

Display parameter on schematic

If you check this box, the parameter name and value will be displayed on the
schematic.

Optimizable

If you check this box, the parameter can be optimized.

Allow statistical distribution

If you check this box, the parameter can be used in yield analysis.

OK

Choose this button when you have made all desired specifications in the tabs of the
User-Compiled Circuit Model dialog box. The component information will be written
to a file called <component_name>.ael and saved to the database. The program
checks for a <component_name>.c file and will prompt you to generate one if such a
file is not found. The dialog box is dismissed.
7-5

User-Compiled Models Dialog Box Reference
Apply

Choose this button when you have entered all specifications for a particular
parameter.The template file will be regenerated to update the parameter data. The
component information will be written to a file called <component_name>.ael and
saved to the database.

Cancel

Choose this button to cancel any parameter data you have changed in the Parameters
Tab. This will cancel all changes since the previous save, dismiss the User-Compiled
Circuit Model dialog box. Also, if the button “Create/Edit Symbols and Pins” was
selected in the Model Code tab, the Schematic window that was opened in symbol
view will now close.
7-6

User-Compiled Circuit Model dialog box (Model Code Tab)

Allows you to generate, modify, and compile your Analog/RF user-defined model.

Create Edit Symbol and Pins

Opens a Schematic window in the Symbol View mode. You can create or edit a
symbol. The symbol is loaded if it exists. If the <component>,dsn file is not found, the
SYM_CUI.dsn file is copied to the current project’s network directory as
<componen>.dsn and loaded.

Code Options

Brings up the Code Options dialog box for setting specifications for the code, such as
type of analysis function.

Create New Code Template

Copies a template file, $HPEESOF_DIR/modelbuilder/lib/cui_circuit.template to the
current project networks directory with the name <component>.c. A warning
message is displayed if a .c file exists with the same name in the current project’s
networks directory. If you continue, the .c file will be overwritten.

Open File

Brings up the Open file dialog box, so you can browse through your directory
structure to select the pathname for the file you want to open.

Save

Saves all current edits to the active file.

Save As

Brings up the Save As dialog box so you can save all current edits to a new file with a
different name.

Compilation Status

Displays the error/warning messages of the last compile and link process.
7-7

User-Compiled Models Dialog Box Reference
Compile Simulator/Compile Model

Generates the makefile (modelbuilder.mak), auto-generates the simulator boot
procedure using the names of the object files, and executes the make process. If the
selection “Recompile all out-of-object files” is checked in the Compile Options dialog
box (see following description), any other .o(bj) files specified in the environment
variable USER_MODEL_LINK_LIST will be recompiled if necessary, and linked into
the executable. (This environment variable is located in the file de_sim.cfg in the
current project directory.)

Under the path $HPEESOF_DIR/modelbuilder/lib/hpeesof, the files
hpeesofdebug.mak (or hpeesofopt.mak) and user.mak are copied to the current
project’s networks directory if they don’t exist. (Either hpeesofdebug,mak or
hpeesofopt.mak is coped, depending on the selected setting of “set debug flag on” in
the Compile Options dialog box.) Do not change the makefile (hpeesof debug.mak or
hpeesofopt.mak). But you can edit the user.mak file. This button’s label and
corresponding function (compiling the simulator or only compiling the current model)
are also determined by selections in the Compile Options dialog box.

Compile Options

Brings up the Compile Options dialog box, which allows you to set specifications for
the compilation process.

If OK is selected, the files to be linked are saved in the environment variable
USER_MODEL_LINK_LIST in the file de_sim.cfg in the current project directory.

OK

Choose this button when you have made all desired specifications in the tabs of the
User-Compiled Circuit Model dialog box. The component information will be written
to a file called <component_name>.ael and saved to the database. The program
checks for a <component_name>.c file and will prompt you to generate one if such a
file is not found. The dialog box is dismissed.

Apply

Choose this button when you have entered all specifications for a particular field in
the Model Code tab. The specified data will be saved to the appropriate files and the
dialog box will remain open.
7-8

Cancel

Choose this button to cancel any data you have specified in the User-Compiled
Circuit Model box. This will cancel all changes, dismiss the User-Compiled Circuit
Model dialog box, and close the Schematic window (if it is open).

Related Topics

Code Options (Analog/RF Models) dialog box

Compile Options dialog box
7-9

User-Compiled Models Dialog Box Reference
Open File dialog box

Allows you to browse through your directory structure to select the pathname for the
code file that you want to open.

Filter box

Displays the currently selected directory.

Directories

List of accessible directories.

Files

List of user-defined code files in the currently selected directory

Selection

Type in a pathname for the directory where your user-defined code is stored or
change directory paths in the Directories box until the correct path is shown here.

OK

Opens the selected code file and dismisses the dialog box.

Filter button

Change to the selected directory and display all user-defined code files from this
directory in the Files box.

Cancel

Cancel the selected pathname and dismiss the dialog box.
7-10

Save As dialog box

Allows you to browse through your directory structure to select the pathname for the
code file that you want to open.

Filter box

Displays the currently selected directory.

Directories

List of accessible directories.

Files

List of user-defined code files in the currently selected directory

Selection

Type in a pathname for the directory where you want to save the user-defined code
file followed by the desired filename or change directory paths in the Directories box
until the correct path is shown here, then type in the filename at the end of the path.

OK

Creates the selected code file as specified and dismiss the dialog box.

Filter button

Change to the selected directory.

Cancel

Cancel the selected pathname and dismiss the dialog box.
7-11

User-Compiled Models Dialog Box Reference
Code Options (Analog/RF Models) dialog box

Allows you to specify certain specifications for the code, such as type of analysis
function. Check the boxes for the items that you want to include. By default, no
functions are checked. These values are not saved in the <component_h>.c file until
you choose the Create New Code Template button.
7-12

Compile Options dialog box

Allows you to specify the option files in a particular project that are to be linked to or
unlinked from the simulator executable.

Active Projects

Use the drop-down list to select the appropriate project from the list of available
projects.

Objects Files in Project

Select the object files that you want to link to the project, then click the right-arrow
button.

Object Files to Be Linked

Includes the previously compiled model files for the project shown. Select the object
files that you want to unlink from the project, then click the left-arrow button.

If compilation is successful, make executable

If you check this box, an executable file for the user-defined model will be created
upon completion of a successful compilation. Default is checked. Note that if a
previously built simulator executable is running, you must first stop and release it.

Recompile all out-of-date object files

If you check this box, any other .o(bj) files specified in the
USER_MODEL_LINK_LIST will be recompiled if necessary, and linked into the
executable.Default is not checked.

Set debug flag on

If you check this box, the debug flag is enabled.Default is checked.

OK

Click to dismiss this dialog box. All object files in the box on the right of this box will
be linked.
7-13

User-Compiled Models Dialog Box Reference
Cancel

Cancels all specified data in this box and dismiss the dialog box only.
7-14

User-Compiled Circuit Model dialog box (Options tab)

Allows you to specify a variety of options associated with the user-defined model.

Component Description

Type in a descriptive name for the component. The default, as shown in the box, is
User-Compiled Model. This will be the identifier used for this component when it is
edited in the Edit Component dialog box, which is used for modifying component
parameters in the Schematic window.

Component Instance Name

Optional.The name specified in this box is used as a prefix in building a unique name
(ID) for every user-defined item. It is part of the annotation displayed with the
symbol representing the parameter subnetwork when placed in a design. The default
is the name of the component.

Library Name.

Optional. The name of the library where the component is located. The default is My
Circuit Library. Type in a new name if desired.

Layout Artwork (Type)

Optional. You can specify an artwork representation to be associated with the
component in the Layout window. The available types are Synchronized, Fixed, AEL
Macro, and None. None is the default.

Layout Artwork (Name)

Optional. You can select the name of an artwork representation to be associated with
the component in the Layout window if you select Fixed or AEL Macro in the Layout
Artwork (Type) field.

Include in Bill of Materials

Optional. if this box is checked, the instances of the user-defined component will be
logged in the Bill of Materials. Default is not checked.
7-15

User-Compiled Models Dialog Box Reference
Use External Text Editor

If this box is checked, a text editor will start. The default editor used is the
hpeesofedit editor. If you wish to access a different text editor, type in its pathname,
then select the check-box. (The vi editor is not available.)

OK

Choose this button when you have made all desired specifications in the tabs of the
User-Compiled Circuit Model dialog box. The component information will be written
to a file called <component_name>.ael and saved to the database. The program
checks for a <component>.c file and will prompt you to generate one if such a file is
not found. The dialog box is dismissed.

Apply

Choose this button when you have entered all specifications in the Option tab. The
specified data will be saved to the appropriate files and the dialog box will remain
open.

Cancel

Choose this button to cancel any data you have specified in the User-Compiled
Circuit Model dialog box. This will cancel all changes, dismiss the User-Compiled
Circuit Model dialog box, and close the Schematic window (if it is open).
7-16

Delete User-Compiled Model dialog box

Allows you to delete a previously saved user-defined model. From the Active Projects
field, use the drop-down list to select the appropriate project from the list of available
projects. From the Models in Project box, click the name of the model(s) that you want
to delete. Click Cancel to dismiss the dialog box only. Click Apply to delete the
selected model(s) and leave the dialog box open. Click OK to delete the selected
model(s) and dismiss the dialog box.
7-17

User-Compiled Models Dialog Box Reference
Link User-Compiled Model dialog box

Allows you to link or unlink selected object files to the simulator. The Link Status box
displays error/warning messages from the previous link. To dismiss the dialog box
only, select Cancel. To add or delete options to be linked, choose the Link Options
button, which brings up the Link Options dialog box. Make specifications in the
Compile Options dialog box, then choose the Link Simulator button to link all
selected object files.

Related Topics

Compile Options dialog box
7-18

Link Options dialog box

Allows you to specify the object files from a particular project to be linked or
unlinked. From the Active Projects field, select an active project from the drop-down
list. The large box on the left shows object files that exist in the selected project. The
large box on the right specifies object files to be linked. To add to the list of files to be
linked, select the appropriate file to be linked from the left box, then click the
right-arrow button. To remove files from the list to be linked, select the appropriate
file from the right box, then click the left-arrow button. If you wish to cancel changes
that you have entered and dismiss the box, choose Cancel. If you want to activate the
changes you have made in the box, choose OK.
7-19

User-Compiled Models Dialog Box Reference
Confirm Model File Not Created message

This message appears when you attempt to dismiss this dialog box without having
compiled a model. Click Yes if you wish to compile a model at this point. Otherwise,
click No.
7-20

Confirm Files Out-of-Synch message

This message occurs when you attempt to dismiss the active dialog box without
having linked recently created files that are more current than the existing
executable. If you wish to dismiss the box without linking the new models, click yes.
Otherwise, click No.
7-21

User-Compiled Models Dialog Box Reference
File/Directory Management dialog box, UNIX

The fields described below are found in a number of dialog boxes used in various file
and directory management operations.

Filter

Displays the current path and indicates which type of files will be listed in the Files
list box. For example, the Delete Design File dialog box Filter field is set to *.dsn in
the networks subdirectory to display all design files there.

Directories

Displays the directories on the current file system. Double-click to traverse the
directory structure until the Files list box displays the file or directory you are
looking for.

Files

Displays all files or directories, meeting the Filter criteria above, in the selected
directory. Double-click the file or directory you want, or click once and choose OK.

Selection

Reflects the currently selected path and filename. This field should reflect the file or
directory you want to open before you choose OK.

Tips:

• If you change the path by typing in the Filter field, click the Filter button below
to update the Files list box.

• You can traverse the Directories list box with a single click (rather than a
double-click) if you click the Filter button each time you select a directory.

• In the Directories list box, double-click the line with the double dots to move up
one level.
7-22

File Management dialog box, PC

The fields described below are found in a number of dialog boxes used in various file
management operations.

Look in:

Displays the current directory (folder). Select a different directory from the
drop-down lists or double-click a folder displayed in the box below. Click the folder
icon with an arrow to view the folders up one level.

File name:

Displays the selected file.

Files of type:

Displays the file extension used to filter the files in the current directory.

Tip:

On NT 4.0, click the question mark, position the pointer over the dialog box control
you want information on, and click. The help provided by Windows for that control is
displayed.
7-23

User-Compiled Models Dialog Box Reference
Directory Management dialog box, PC

The fields described below are found in a number of dialog boxes used in various
directory management operations.

Directories

Displays the contents of the current directory. Double-click as needed to locate
desired directory. Double-click to select it. The new path is reflected under the
“Directories:” label.

Drives

Displays the current drive. If necessary, use the drop-down list to select a different
one.

Network

If necessary, click Network to display the Connect Network Drive dialog box for
connecting to a different drive on the network.
7-24

Index

A
AEL expressions

and User-Compiled Analog Models, 1-35
changes from Series IV, 1-35
replacement of Series IV data items, 1-33

algorithm examples, 2-18
Analog Model Development Kit

file management, 1-39
porting from Libra Senior, 1-33

ANSI-C code, 1-2

B
behavioral models, 6-1
BJTs

SDDs, 5-36
Boltzmann constant

and User-Compiled Analog Models, 1-16
defining macros for, 1-16

C
capacitors

implementing with SDDs, 5-47
SDDs, 5-25
using in transient models, 4-2

carriers
FDDs, 6-19

characteristics
of User-Compiled Analog Models, 1-14

circuit elements
creating interface definitions and

declarations, 1-16
Circuit Envelope simulator

of FDDs, 6-3
sources, 6-5

circuits
nodal analysis, 5-45

clock enables
adding to FDDs, 6-17, 6-27

coaxial cable example, 2-19
coding

linear elements, 2-6
compiling

models, 1-9
components

FDD examples, 6-22

SDD examples, 5-17, 5-47
constitutive relationships, 5-4

FDDs, 6-8
SDDs, 5-4

continuity
FDDs, 6-9
SDDs, 5-7

controlling currents
SDDs, 5-10, 5-15, 5-34

convergence
FDDs, 6-9

creating
linear elements, 2-1
nonlinear elements, 3-1

current equations
FDDs, 6-8

custom nonlinear devices, 5-1

D
data items

See also Series IV data Items
referencing in User-Compiled Analog

Models, 1-29
delay

in FDDs, 6-19
diodes

SDDs, 5-28
user-defined model, 3-4

E
element files

user-defined and User-Compiled Analog
Models, 1-32

element parameters
and User-Compiled Analog Models, 1-17
keyword strings, 1-17
types, 1-17

element responses
nonlinear, 1-19
transient, 1-18, 1-21

elements
linear and User-Compiled Analog Models,

1-22
nonlinear and responses, 1-19
user-defined in User-Compiled Analog

Models, 1-32
Index-1

using built-ins, 1-31
using in User-Compiled Analog Models,

1-31
envelope waveforms, 6-4
equation based

nonlinear devices, 5-1, 6-1
equations

adding to FDDs, 6-24
constitutive relationships, 5-4
deriving Y-parameters, 2-4
FDDs, 6-8
for SDDs, 5-3
nodal analysis, 5-45
port, 5-10

error messages
of SDDs, 5-50

error/warning messages
displaying in User-Compiled Analog

Models, 1-30
examples

FDDs, 6-28
IQ modulator, 6-29
mixer, 6-31
sample and hold, 6-34
SDDs, 5-17

explicit representations
of SDD equations, 5-4

F
FDDs

about, 6-1
applications, 6-1
clock enables, 6-17, 6-27
compared to SDDs, 6-1
components, 6-22
constitutive relationships, 6-9
continuity, 6-9
delaying carriers, 6-19
equations, 6-8
examples, 6-22, 6-28
freq parameter, 6-10, 6-25
functions, 6-6, 6-18
harmonics, 6-11
impedance, 6-21
indexing, 6-6
IQ modulator, 6-29
miscellaneous functions, 6-20
mixer, 6-31

overview, 6-2
port variables, 6-6, 6-18
procedure for adding, 6-23
sample and hold, 6-34
signal models, 6-2
simulation compatibility, 6-21
simulations, 6-21
trigger applications, 6-1
trigger events, 6-16, 6-18
triggers, 6-26

file management
in Analog Model Development Kit, 1-39

freq
adding to FDDs, 6-25
FDDs, 6-10

frequency-domain defined devices. See
FDDs

functions
_harm variable, 6-11
and User-Compiled Analog models, 1-18
for FDDs, 6-7, 6-16, 6-17, 6-20
weighting

SDDs, 5-8

G
Gummel-Poon BJT

SDDs, 5-36

H
harmonic balance simulations

of FDDs, 6-2
harmonics

FDDs, 6-11
indexing using _harm, 6-11

I
ideal amplifiers

SDDs, 5-20
ideal mixers

SDDs, 5-23
impedance

defining for FDDs, 6-21
implicit representation

of SDD equations, 5-5
indexing

FDDs, 6-6, 6-10
freq, 6-10
using _harm, 6-11
Index-2

inductors
SDDs, 5-32
using in transient models, 4-2

interface
creating declarations and definitions,

1-16

L
Libra Senior

porting to Analog Model Development
Kit, 1-33

library browser
adding User-Compiled Analog Models,

1-12
linear elements

and User-Compiled Analog Models, 1-22
using built-ins in User-Compiled Analog

Models, 1-31
linear models

creating, 2-1
linear pi-section attenuator example, 2-9
linking

User-Compiled Analog Models, 1-37

M
macros

in Boltzmann constant, 1-16
in User-Defined Analog Models, 1-16
in userdefs.h file, 1-16

messages
displaying error/warning messages in

User-Compiled Analog Models, 1-30
mixers

SDDs, 5-23
models

diode example, 3-4
FDDs, 6-2
nonlinear

parts, 3-2
transient

user defined, 4-1
modified nodal analysis

SDDs, 5-45

N
narrow-band models, 6-22
nodal analysis, 5-45
noise

analysis in linear models, 2-7
behavior in linear models, 2-7
characteristics

adding to a linear model, 2-14
parameters in linear models, 2-7
thermal, 2-14
thermal in linear models, 2-7

nonlinear elements
equation-based, 5-1
responses, 1-19
SDD capacitors, 5-25
SDD inductors, 5-32
SDD resistors, 5-18

nonlinear models, 6-1
diode example, 3-4
making, 3-1
parts of, 3-2

n-ports
FDDs, 6-6

P
ports

constitutive relationships, 5-4
current equations, 6-8
equations

SDDs, 5-10
SDDs, 5-10
variables, 5-3

FDDs, 6-6
voltage equations, 6-8

R
resistors

using in transient models, 4-2

S
sample and hold, 6-17
SDDs

about, 5-1
adding to a schematic, 5-13
and mixers, 5-23
capacitor example, 5-25
compared to FDDs, 6-1
continuity, 5-7
controlling currents, 5-10, 5-15, 5-34
diode example, 5-28
equations, 5-10
error messages, 5-50
Index-3

examples, 5-17
Gummel-Poon BJT example, 5-36
ideal amplifier example, 5-20
implementing capacitors, 5-47
modified nodal analysis, 5-45
nodal analysis, 5-45
nonlinear inductors, 5-32
nonlinear resistor, 5-18
port variables, 5-3
weighting function, 5-8
weighting functions, 5-16

Series IV
AEL expressions changes, 1-35

Series IV data items
replacement by AEL expressions, 1-33

simulations
FDDs, 6-21
of FDDs, 6-2

sources
FDDs, 6-5

S-parameter equations, 2-1
substrate components

User-Compiled Analog Models, 1-34
substrates

use model See substrate components
symbolically-defined device. See SDDs
symbols

creating or modifying, 1-7

T
templates

for user-compiled models, 1-10
transient elements

defining, 4-5
responses, 1-18

transient models
user defined, 4-1

transient responses, 1-21
transmission lines

example, 2-15
using in transient models, 4-3

trigger events
FDDs, 6-16
functions, 6-18

triggers
adding to FDDs, 6-26

tuned models, 6-22

U
user defined nonlinear devices, 5-1
User-Compiled Analog Models

adding to library browser, 1-12
and Boltmann constant, 1-16
changes to AEL expressions, 1-35
characteristics, 1-14
creating new models, 1-3
deleting, 1-36
element parameter types, 1-17
element parameters, 1-17
functions, 1-18
keyword strings, 1-17
linking, 1-37
macros, 1-16
opening an existing model, 1-35
porting from Libra Senior, 1-33
referencing data items, 1-29
substrate components
writing and compiling, 1-9

user-defined elements
booting in User-Compiled Analog Models,

1-32
files and User-Compiled Analog Models,

1-32
userdefs.h file

function declarations, 1-16
interface data structure type definitions,

1-16
macros, 1-16
symbols, 1-16

V
variables

_harm, 6-11
for SDD ports, 5-3

voltage equations
FDDs, 6-8

W
weighting functions

SDDs, 5-8, 5-16

Y
Y-parameters

equations, 2-4
Index-4

Index-5

Index-6

	Contents
	Chapter 1: Building User-Compiled Analog Models
	Background
	Creating a New Model
	Starting a User-Compiled Model
	Defining the Model Parameters
	Creating the Model Symbol
	Setting Options
	Creating the Code and Compiling the Model

	Characteristics of User-Compiled Elements
	Creating Circuit Elements Interface Definitions and Declarations
	Series IV Functions
	Referencing Data Items
	Displaying Error/Warning Messages
	Using Built-In ADS Linear Elements in User-Defined Elements
	Booting All Elements in a User-Defined Element File

	Porting Libra Senior to the ADS 1.0 Model Builder Interface
	Data Items
	Default Units
	Substrates/Built-In Models
	AEL Changes

	Opening an Existing Model
	Deleting a User-Compiled Model
	Linking User-Compiled Models
	Managing Model Files
	Accessing Dynamically Loaded Devices

	Chapter 2: Creating Linear Circuit Elements
	Deriving S-Parameter Equations
	Deriving Y-Parameter Equations
	Coding a Linear Element
	Pi-Section Resistive Attenuator

	Transmission Line Section
	Deriving an S-Parameter
	Separating the Expressions

	Algorithms
	Applying a Problem to the Coaxial Cable Section
	Calculating Remaining Expressions
	Adding Noise Characteristics

	Chapter 3: Creating Nonlinear Circuit Elements
	Requirements for Creating Nonlinear Elements
	Linear Part
	Nonlinear Part
	AC Part

	User-defined P-N Diode Model
	Defining a Nonlinear Element
	Referencing Data Items
	Displaying Error/Warning Messages

	Chapter 4: Creating Transient Circuit Elements
	Requirements for Creating Transient Elements
	Using Resistors, Capacitors, and Inductors
	Using Transmission Lines

	User-defined P-N Diode Model
	Defining the Transient Device
	Transient Analysis Function
	Referencing Data Items
	Displaying Error/Warning Messages

	Chapter 5: Custom Modeling with Symbolically-Defined Devices
	Writing SDD Equations
	Port Variables
	Defining Constitutive Relationships with Equations
	Explicit Representation
	Implicit Representation
	Explicit Versus Implicit Representations
	Continuity
	Weighting Functions
	Controlling Currents
	Specifying More than One Equation for a Port
	Using an SDD to Generate Noise
	Summary

	Adding an SDD to a Schematic
	Defining a Controlling Current
	Defining a Weighting Function

	SDD Examples
	Nonlinear Resistor
	Ideal Amplifier Block
	Ideal Mixer
	Nonlinear Capacitors
	Full Model Diode, with Capacitance and Resistance
	Nonlinear Inductors
	Controlling Current, Instantaneous Power
	Gummel-Poon BJT
	Examples Summary

	Modified Nodal Analysis
	Alternative Implementation of a Capacitor
	Error Messages

	Chapter 6: Custom Modeling with Frequency-Domain Defined Devices
	Signal Models and Sources
	Defining Sources

	The Frequency-Domain Defined Device
	Retrieving Values from Port Variables
	Defining Constitutive Relationships with Equations
	Continuity
	Specifying Carriers with the Freq Parameter
	Creating Output Harmonics
	Trigger Events
	Output Clock Enables
	Accessing Port Variables at Trigger Events
	Delaying the Carrier and the Envelope
	Miscellaneous FDD Functions
	Defining Input and Output Impedances
	Compatibility with Different Simulation Modes
	Components Based on the FDD

	Adding an FDD to a Schematic
	Defining Current and Voltage Equations
	Defining Frequency Parameters
	Defining Triggers
	Defining Clock Enables

	FDD Examples
	IQ Modulator
	Mixer
	Sample and Hold

	Chapter 7: User-Compiled Models Dialog Box Reference
	New User-Compiled Model dialog box
	Circuit Type dialog box
	Open User-Compiled Model dialog box
	User-Compiled Circuit Model, Parameters Tab
	User-Compiled Circuit Model dialog box (Model Code Tab)
	Open File dialog box
	Save As dialog box
	Code Options (Analog/RF Models) dialog box
	Compile Options dialog box
	User-Compiled Circuit Model dialog box (Options tab)
	Delete User-Compiled Model dialog box
	Link User-Compiled Model dialog box
	Link Options dialog box
	Confirm Model File Not Created message
	Confirm Files Out-of-Synch message
	File/Directory Management dialog box, UNIX
	File Management dialog box, PC
	Directory Management dialog box, PC

	Index

